Nav: Home

The return of the spin echo

September 24, 2020

Small particles can have an angular momentum that points in a certain direction - the spin. This spin can be manipulated by a magnetic field. This principle, for example, is the basic idea behind magnetic resonance imaging as used in hospitals. An international research team has now discovered a surprising effect in a system that is particularly well suited for processing quantum information: the spins of phosphorus atoms in a piece of silicon, coupled to a microwave resonator. If these spins are cleverly excited with microwave pulses, a so-called spin echo signal can be detected after a certain time - the injected pulse signal is re-emitted as a quantum echo. Surprisingly, this spin echo does not occur only once, but a whole series of echoes can be detected. This opens up new possibilities of how information can be processed with quantum systems.

The experiments were carried out at the Walther-Meissner-Institute in Garching by researchers from the Bavarian Academy of Sciences and Humanities and the Technical University of Munich, the theoretical explanation was developed at TU Wien (Vienna). Now the joint work has been published in the journal "Physical Review Letters".

The echo of quantum spins

"Spin echoes have been known for a long time, this is nothing unusual", says Prof. Stefan Rotter from TU Wien (Vienna). First, a magnetic field is used to make sure that the spins of many atoms point in the same magnetic direction. Then the atoms are irradiated with an electromagnetic pulse, and suddenly their spins begin to change direction.

However, the atoms are embedded in slightly different environments. It is therefore possible that slightly different forces act on their spins. "As a result, the spin does not change at the same speed for all atoms," explains Dr. Hans Hübl from the Bavarian Academy of Sciences and Humanities. "Some particles change their spin direction faster than others, and soon you have a wild jumble of spins with completely different orientations".

But it is possible to rewind this apparent chaos - with the help of another electromagnetic pulse. A suitable pulse can reverse the previous spin rotation so that the spins all come together again. "You can imagine it's a bit like running a marathon," says Stefan Rotter. "At the start signal, all the runners are still together. As some runners are faster than others, the field of runners is pulled further and further apart over time. However, if all runners were now given the signal to return to the start, all runners would return to the start at about the same time, although faster runners have to cover a longer distance back than slower ones."

In the case of spins, this means that at a certain point in time all particles have exactly the same spin direction again - and this is called the "spin echo". "Based on our experience in this field, we had already expected to be able to measure a spin echo in our experiments," says Hans Hübl. "The remarkable thing is that we were not only able to measure a single echo, but a series of several echoes."

The spin that influences itself

At first, it was unclear how this novel effect comes about. But a detailed theoretical analysis now made it possible to understand the phenomenon: It is due to the strong coupling between the two components of the experiment - the spins and the photons in a microwave resonator, an electrical circuit in which microwaves can only exist at certain wavelengths. "This coupling is the essence of our experiment: You can store information in the spins, and with the help of the microwave photons in the resonator you can modify it or read it out," says Hans Hübl.

The strong coupling between the atomic spins and the microwave resonator is also responsible for the multiple echoes: If the spins of the atoms all point in the same direction in the first echo, this produces an electromagnetic signal. "Thanks to the coupling to the microwave resonator, this signal acts back on the spins, and this leads to another echo - and on and on," explains Stefan Rotter. "The spins themselves cause the electromagnetic pulse, which is responsible for the next echo."

The physics of the spin echo has great significance for technical applications - it is an important basic principle behind magnetic resonance imaging. The new possibilities offered by the multiple echo, such as the processing of quantum information, will now be examined in more detail. "For sure, multiple echos in spin ensembles coupled strongly to the photons of a resonator are an exciting new tool. It will not only find useful applications in quantum information technology, but also in spin-based spectroscopy methods", says Rudolf Gross, co-author and director of the Walther-Meissner-Institute.
-end-
Contact:

Prof. Stefan Rotter
Institute for Theoretical Physics
TU Wien
Wiedner Hauptstraße 8-10, 1040 Vienna
+43 1 58801 13618
stefan.rotter@tuwien.ac.at

Priv.-Doz. Dr. Hans Huebl
Walther-Meißner-Institut der BAdW
huebl@wmi.badw.de
+49 89 289-14204

Vienna University of Technology

Related Magnetic Field Articles:

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.
Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.
Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.
How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.
Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.