Desert pathfinder at work

September 25, 2005

The Atacama Pathfinder Experiment (APEX) project celebrates the inauguration of its outstanding 12-m telescope, located on the 5100 m high Chajnantor plateau in the Atacama Desert (Chile). The APEX telescope, designed to work at sub-millimetre wavelengths, in the 0.2 to 1.5 mm range, passed successfully its Science Verification phase in July, and since then is performing regular science observations. This new front-line facility provides access to the "Cold Universe" with unprecedented sensitivity and image quality.

After months of careful efforts to set up the telescope to work at the best possible technical level, those involved in the project are looking with satisfaction at the fruit of their labour: APEX is not only fully operational, it has already provided important scientific results.

"The superb sensitivity of our detectors together with the excellence of the site allow fantastic observations that would not be possible with any other telescope in the world," said Karl Menten, Director of the group for Millimeter and Sub-Millimeter Astronomy at the Max-Planck-Institute for Radio Astronomy (MPIfR) and Principal Investigator of the APEX project.

Millimetre and sub-millimetre astronomy opens exciting new possibility in the study of the first galaxies to have formed in the Universe and of the formation processes of stars and planets. In particular, APEX allows astronomers to study the chemistry and physical conditions of molecular clouds, that is, dense regions of gas and dust in which new stars are forming. Among the first studies made with APEX, astronomers took a first glimpse deep into cradles of massive stars, observing for example the molecular cloud G327 and measuring significant emission in carbon monoxide and complex organic molecules (see ESO PR Photo 30b/05).

The official inauguration of the APEX telescope will start in San Pedro de Atacama on September, 25th.

The Ambassadors in Chile of some of ESO's member states, the Intendente of the Chilean Region II, the Mayor of San Pedro, the Executive Director of the Chilean Science Agency (CONICYT), the Presidents of the Communities of Séquitor and Toconao, as well as representatives of the Ministry of Foreign Affairs and Universities in Chile, will join ESO's Director General, Dr. Catherine Cesarsky, the Chairman of the APEX Board and MPIfR director, Prof. Karl Menten, and the Director of the Onsala Space Observatory, Prof. Roy Booth, in a celebration that will be held in San Pedro de Atacama.

The next day, the delegation will visit the APEX base camp in Sequitor, near San Pedro, from where the telescope is operated, as well as the APEX site on the 5100m high Llano de Chajnantor.
-end-
More Information
APEX is a collaboration between the Max-Planck-Institut für Radioastronomie (MPIfR), Onsala Space Observatory (OSO), and the European Southern Observatory (ESO). The telescope was designed and constructed by VERTEX Antennentechnik GmbH (Germany), under contract by MPIfR, and is based on a prototype antenna constructed for the ALMA project. Operation of APEX in Chile is entrusted to ESO.

The First Light of APEX took place in July and is described in ESO Press Release 18/05. The APEX web site is at http://www.apex-telescope.org/

Contacts

Karl Menten
Max-Planck-Institute for Radioastronomy, Bonn, Germany
Phone: +49 228-52 52 97
Email: kmenten@mpifr-bonn.mpg.de

Lars Aake Nyman
APEX, Sequitor Base, Chile
Phone: +56 2 582 02 00
Email: lnyman@eso.org

Robert Laing
ESO, Garching
Phone: +49 89 3200 6625
Email: rlaing@eso.org

ESO

Related Telescope Articles from Brightsurf:

ATLAS telescope discovers first-of-its-kind asteroid
University of Hawai'i telescope discovers extraordinary asteroid with comet-like features that has researchers puzzled.

Precision calibration empowers largest solar telescope
An article published in the SPIE publication Journal of Astronomical Telescopes, Instruments, and Systems (JATIS), 'Polarization Modeling and Predictions for DKIST Part 5: Impacts of enhanced mirror and dichroic coatings on system polarization calibration,' marks a substantial advance in ensuring the accurate solar information measured and collected by the Daniel K.

Subaru Telescope captures 1800 exploding stars
The Subaru Telescope has captured images of more than 1800 exploding stars in the Universe, some located 8 billion light years from Earth.

Quasar jets confuse orbital telescope
Astrophysicists from the Moscow Institute of Physics and Technology, the Lebedev Physical Institute of the Russian Academy of Sciences (LPI RAS), and NASA have found an error in the coordinates of active galactic nuclei measured by the Gaia space telescope, and helped correct it.

Cosmic telescope zooms in on the beginning of time
Observations from Gemini Observatory identify a key fingerprint of an extremely distant quasar, allowing astronomers to sample light emitted from the dawn of time.

Both halves of NASA's Webb Telescope successfully communicate
For the first time, the two halves of NASA's James Webb Space Telescope -- the spacecraft and the telescope -- were connected together using temporary ground wiring that enabled them to 'speak' to each other like they will in flight.

Balloon-borne telescope looks for cosmic gamma rays
Cosmic gamma rays can provide us with important insights into the high-energy phenomena in our universe.

Natural telescope sets new magnification record
An international team of astronomers, led by Harald Ebeling of the Institute for Astronomy at the University of Hawaii at Manoa, has discovered one of the most extreme instances of magnification by gravitational lensing.

NASA's Webb Telescope to witness galactic infancy
Scientists will use NASA's James Webb Space Telescope to study sections of the sky previously observed by NASA's Great Observatories, including the Hubble Space Telescope and the Spitzer Space Telescope, to understand the creation of the universe's first galaxies and stars.

New way to weigh a white dwarf: Use Hubble Space Telescope
For the first time, astronomers have used a novel method to determine the mass of a type of star known as a 'white dwarf' -- the shrunken corpse of a dead star that used to be like our sun.

Read More: Telescope News and Telescope Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.