A new look at the proton

September 25, 2007

The spin of a particle can most easily be compared to the rotating movement of a spinning top. In the HERMES experiment at the HERA particle accelerator in Hamburg, physicists are investigating how the spin of protons can be explained by the characteristics of their building blocks: quarks and gluons. Van der Nat investigated a method to measure the contribution of the spin of the quarks to the total spin of the proton, independent of the contribution of the spin of the gluons. For this a quark is shot out of the proton by an electron from the particle accelerator, as a result of which two hadrons are formed. The direction and amount of motion of these two hadrons is accurately measured. This method, which Van der Nat applied for the first time, turned out to be successful.

Spin is a characteristic property of particles, just like matter and electrical charge. Spin was discovered in 1925, by the Dutch physicists Goudsmit and Uhlenbeck. In 1987, scientists at CERN in Geneva discovered that only a small fraction of the proton's spin is caused by the spin of its constituent quarks. The HERMES experiment was subsequently set up to find this missing quantity of spin, and has been running since 1995. It is expected that spin will play an increasingly important role in many applications. The MRI scanner is a well-known example of an application in which the spin of protons plays a key role.

Netherlands Organization for Scientific Research

Related Quarks Articles from Brightsurf:

Observation of four-charm-quark structure
Hadrons are composed of quarks, a type of fundamental particle, bound by the strong interaction.

New research deepens mystery of particle generation in proton collisions
Researchers have shown that in polarized proton-proton collisions, the neutral pions in the very forward area of collisions -- where direct interactions involving quarks and gluons are not applicable -- still have a large degree of left-right asymmetry.

Scientists shed light on mystery of dark matter
Nuclear physicists at the University of York are putting forward a new candidate for dark matter -- a particle they recently discovered called the d-star hexaquark.

Exploring strangeness and the primordial Universe
Within quark-gluon plasma, strange quarks are readily produced through collisions between gluons.

Deuteron-like heavy dibaryons -- a step towards finding exotic nuclei
Using supercomputer, TIFR's physicists have predicted the existence of deuteron-like exotic nuclei for the first time as well as provided their masses precisely.

FSU physics researchers break new ground, explore unknown energy regions
Florida State University physicists are using photon-proton collisions to capture particles in an unexplored energy region, yielding new insights into the matter that binds parts of the nucleus together.

A novel tool to probe fundamental matter
The origin of matter remains a complex and open question.

CEBAF turns on the charm
The world's most advanced particle accelerator for investigating the quark structure of the atom's nucleus has just charmed physicists with a new capability.

Physicists reveal why matter dominates universe
Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

Physicists solve 35-year-old mystery about quarks
Physicists from Tel Aviv University, the Massachusetts Institute of Technology and the Thomas Jefferson National Accelerator Facility now know why quarks, the building blocks of the universe, move more slowly inside atomic nuclei, solving a 35-year-old-mystery.

Read More: Quarks News and Quarks Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.