The wild, hidden cousin of SN 1987A

September 25, 2008

The supernova, called SN 1996cr, was first singled out in 2001 by Franz Bauer. Bauer noticed a bright, variable source in the Circinus spiral galaxy, using NASA's Chandra X-ray Observatory. Although the source displayed some exceptional properties Bauer and his Penn State colleagues could not identify its nature confidently at the time.

It was not until years later that Bauer and his team were able to confirm that this object was a supernova. Clues from a spectrum obtained by ESO's Very Large Telescope led the team to start the real detective work of searching through data from 18 different telescopes, both ground- and space-based, nearly all of which existed. Because this object was found in an interesting nearby galaxy, the public archives of these telescopes contained abundant observations.

The data show that SN 1996cr is among the brightest supernovae ever seen in radio and X-rays. It also bears many striking similarities to the famous supernova SN 1987A, which occurred in a neighbouring galaxy only 160 000 light-years from Earth.

"This supernova appears to be a wild cousin of SN 1987A," says Bauer. "The two look alike in many ways, except this newer supernova is intrinsically a thousand times brighter in radio and X-rays."

Visible-light images from the archives of the Anglo-Australian Telescope in Australia show that SN 1996cr exploded sometime between 28 February 1995 and 15 March 1996, but it is the only one of the five nearest supernovae of the last 25 years that was not seen shortly after the explosion.

Other major X-ray observatories in orbit like ROSAT and ASCA did not detect SN 1996cr, but since it was first detected by Chandra in 2001 it has become steadily brighter. Previously, SN 1987A was the only known supernova with an X-ray output that increased over time.

"It's a bit of a coup to find SN 1996cr like this, and we could never have nailed it without the serendipitous data taken by all of these telescopes. We've truly entered a new era of 'internet astronomy'," said Bauer.

The combined data, in conjunction with theoretical work, have led the team to develop a model for the explosion. Before the parent star exploded, it cleared out a large cavity in the surrounding gas, either via a strong wind or from an outburst from the star late in its life. So the blast wave from the explosion itself could expand relatively unimpeded into this cavity. Once the blast wave hit the dense material surrounding SN1996cr, the impact caused the system to glow brightly in X-ray and radio emission. The X-ray and radio emission from SN 1987A is probably fainter because the surrounding material is less compact.

Astronomers think that both SN 1987A and SN 1996cr show evidence for these pre-explosion clear-outs by a star doomed to explode. Having two nearby examples suggests that this type of activity could be relatively common during the death of massive stars.

"Not only does our work suggest that SN 1987A isn't as unusual as previously thought, but it also teaches us more about the tremendous upheavals that massive stars can undergo over their lifetimes," said co-author Vikram Dwarkadas of the University of Chicago.
-end-


ESO

Related Supernova Articles from Brightsurf:

Scientists discover supernova that outshines all others
A supernova at least twice as bright and energetic, and likely much more massive than any yet recorded has been identified by an international team of astronomers, led by the University of Birmingham.

Supernova observation first of its kind using NASA satellite
Their research, detailed in the Monthly Notices of the Royal Astronomical Society, represents the first published findings about a supernova observed using TESS, and add new insights to long-held theories about the elements left behind after a white dwarf star explodes into a supernova.

Astronomers find possible elusive star behind supernova
Astronomers may have finally found a doomed star that seemed to have avoided detection before its explosive death.

Stellar thief is the surviving companion to a supernova
Hubble found the most compelling evidence that some supernovas originate in double-star systems.

Supernova may have 'burped' before exploding
Only by increasing the rate at which telescopes monitor the sky has it been possible to catch more Fast-Evolving Luminous Transients (FELTs) and begin to understand them.

An unusual white dwarf may be a supernova leftover
Astronomers have identified a white dwarf star in our galaxy that may be the leftover remains of a recently discovered type of supernova.

Researchers show how to make your own supernova
Researchers from the University of Oxford are using the largest, most intense lasers on the planet, to for the first time, show the general public how to recreate the effects of supernovae, in a laboratory.

The big star that couldn't become a supernova
For the first time in history, astronomers have been able to watch as a dying star was reborn as a black hole.

Seeing quadruple: Four images of the same supernova, a rare find
Galaxies bend light through an effect called gravitational lensing that helps astronomers peer deeper into the cosmos.

Explosive material: The making of a supernova
Pre-supernova stars may show signs of instability for months before the big explosion

Read More: Supernova News and Supernova Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.