New 'Smart Rounds' improves safety of radiation therapy

September 25, 2013

ATLANTA, GA - The North Shore-LIJ Health System Department of Radiation Medicine has developed a novel process to optimize the safety and efficacy of radiation therapy and is presenting this data at the 55th Annual Meeting of in American Society of Radiation Oncology (ASTRO) in Atlanta, GA.

At most hospitals, when a patient is treated with radiation therapy, the treatment plan is usually quickly and superficially reviewed by other physicians immediately after treatment begins, leaving no time to catch errors or provide feedback on a complex treatment. Review at this late stage can lead to medical errors, and any changes that are identified can lead to harmful delays in patient treatments and costly use of medical resources to fix.

To address these problems, the North Shore-LIJ Department of Radiation Medicine started a pilot program called "Smart Rounds," in which a comprehensive, multidisciplinary, peer-to-peer review occurs at the beginning of the treatment planning process. This allows for a more meaningful review of the patient's treatment plan by formalizing discussions about patient care among physicians, medical physicists, radiation therapists and nurses before any planning starts. This leads to safer, more individualized radiation treatment plans and better utilization of medical resources.

As presented today at ASTRO, a six-month evaluation of the Smart Rounds program demonstrates striking improvements in the quality of care, with the percentage of timely, errorless radiation treatment plans steadily increasing since initiation of the process.

"Smart Rounds is an essential tool to minimize errors and inefficiencies in the radiation therapy treatment planning process," said Brett Cox, MD, chief of brachytherapy in the Department of Radiation Medicine at North Shore-LIJ, and lead author of the study. "More than one out of three patients reviewed at Smart Rounds needed modification of their radiation treatment plan or treatment schedule to provide optimal care."

According to the study's senior author, Ajay Kapur, PhD, director of medical Physics research and education in the Department of Radiation Medicine, "Being able to deploy departmental resources in a prospective and focused manner maximizes the efficiency of the radiation treatment planning process and improves quality of care. Smart Rounds makes that possible."

"Smart Rounds is a powerful tool to optimize quality patient care," noted Louis Potters, MD, North Shore-LIJ's chair of radiation medicine. "We look forward to providing further innovations to maximize the quality of care our institution provides to our patients."
-end-
About North Shore-LIJ Health System

One of the nation's largest healthcare systems, North Shore-LIJ delivers world-class clinical care throughout the New York metropolitan area, pioneering research at The Feinstein Institute for Medical Research and a visionary approach to medical education highlighted by the Hofstra North Shore-LIJ School of Medicine. North Shore-LIJ cares for people at every stage of life at 16 hospitals and nearly 400 outpatient physician practices throughout the region. North Shore-LIJ's owned hospitals and long-term care facilities house more than 6,000 beds, employ more than 10,000 nurses and have affiliations with more than 9,400 physicians. With a workforce of more than 46,000, North Shore-LIJ is the largest employer on Long Island and the third-largest private employer in New York City. For more information, go to http://www.northshorelij.com.

Northwell Health

Related Radiation Therapy Articles from Brightsurf:

Pulmonary artery thrombosis a complication of radiation therapy
According to ARRS' American Journal of Roentgenology, the imaging findings of in situ pulmonary artery thrombosis (PAT) associated with radiation therapy (RT) are different from those of acute pulmonary emboli and do not appear to embolize.

New approach for calculating radiation dosimetry allows for individualized therapy
Researchers have developed a simplified process that could enhance personalization of cancer therapy based on a single nuclear medicine scan.

Developing microbeam radiation therapy (MRT) for inoperable cancer
An innovative radiation treatment that could one day be a valuable addition to conventional radiation therapy for inoperable brain and spinal tumors is a step closer, thanks to new research led by University of Saskatchewan (USask) researchers at the Canadian Light Source (CLS).

Travel considerations specified for 177Lu-DOTATATE radiation therapy patients
Researchers and patient advocates have addressed the challenges related to traveling after receiving 177Lu-DOTATATE radiation therapy in a study published in the April issue of The Journal of Nuclear Medicine.

A new way to monitor cancer radiation therapy doses
More than half of all cancer patients undergo radiation therapy and the dose is critical.

AI can jump-start radiation therapy for cancer patients
Artificial intelligence can help cancer patients start their radiation therapy sooner -- and thereby decrease the odds of the cancer spreading -- by instantly translating complex clinical data into an optimal plan of attack.

Towards safer, more effective cancer radiation therapy using X-rays and nanoparticles
X-rays could be tuned to deliver a more effective punch that destroys cancer cells and not harm the body.

Radiation therapy effective against deadly heart rhythm
A single high dose of radiation aimed at the heart significantly reduces episodes of a potentially deadly rapid heart rhythm, according to results of a phase one/two study at Washington University School of Medicine in St.

New mathematical model can improve radiation therapy of brain tumours
Researchers have developed a new model to optimize radiation therapy and significantly increase the number of tumor cells killed during treatment.

Using artificial intelligence to deliver personalized radiation therapy
New Cleveland Clinic-led research shows that artificial intelligence (AI) can use medical scans and health records to personalize the dose of radiation therapy used to treat cancer patients.

Read More: Radiation Therapy News and Radiation Therapy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.