Unlocking long-hidden mechanisms of plant cell division

September 25, 2014

AMHERST, Mass. - Along with copying and splitting DNA during division, cells must have a way to break safely into two viable daughter cells, a process called cytokinesis. But the molecular basis of how plant cells accomplish this without mistakes has been unclear for many years.

In a new paper by cell biologist Magdalena Bezanilla of the University of Massachusetts Amherst, she and her doctoral student Shu-Zon Wu present a detailed new model that for the first time proposes how plant cells precisely position a "dynamic and complex" structure called a phragmoplast at the cell center during every division and how it directs cytokinesis. The work is reported in the current issue of the journal, eLife.

The complicated cytokinesis process begins at the cell center where the phragmoplast sends out tendrils toward opposite sides of the cell like a belt across its waist. These polymers, microtubules and actin filaments travel tens or hundreds of microns towards the cell wall to a predetermined position where a special structure called the cell plate will form. The new wall making two new cells will take shape along this pathway between the cell plates on opposite walls.

"How this process is directed and accomplished has been a mystery for a very long time," says Bezanilla. But clearly, the scientist adds, microtubules are needed here because without them the cell plate does not form. "And we've known for a very long time that actin filaments are there in the structure, but nobody knew what they were for. What steers phragmoplast expansion at the molecular level was just not understood."

"Our new paper proposes a model showing how plant cells steer their cell division machinery into position and how actin contributes. Our data from experiments in moss and tobacco provide evidence that a protein called myosin VIII, along with actin, guide cytokinesis. It answers what has been an open question in cell biology for decades."

Using a state-of-the-art microscope funded by the Massachusetts Life Sciences Institute at UMass Amherst, she and Wu were able to watch key structures taking shape, label them and make videos of cytokinesis for hours to piece together how actin, microtubules and the structural protein known as myosin VIII cooperate to accomplish proper division.

"What's unique with this myosin is that it can also interact with microtubules and in fact we think the microtubules are its cargo," Bezanilla says. "We think the myosin is pulling the microtubule along an actin filament." Crosstalk between actin and microtubules is something that happens in all cells so this work in plants could have implications in animal cell processes as well, Bezanilla says.

She adds, "Some of these things were just at the edge of being visible. It was quite a feat to be able to image the process for such a long time and to witness a live cell process."

Overall, using a combination of genetics and live-cell imaging to query what guides the phragmoplast, the scientists identified actin and actin-based molecular motors, the class VIII myosins, as a key to the steering mechanism for cytokinesis in these plant cells. Their paper describes step by step how it unfolds.

University of Massachusetts at Amherst

Related Microtubules Articles from Brightsurf:

Unbalanced microtubule networks launch establishment of neuronal polarity
Prof. MENG Wenxiang's group from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences recently reported a new mechanism by which microtubule networks instruct neuronal polarity.

Biologists unravel tangled mystery of plant cell growth
When cells don't divide into proper copies of themselves, living things fail to grow as they should.

Cellular train track deformities shed light on neurological disease
A new technique allows researchers to test how the deformation of tiny train track-like cell proteins affects their function.

Parkinson's disease protein structure solved inside cells using novel technique
The top contributor to familial Parkinson's disease is mutations in leucine-rich repeat kinase 2 (LRRK2), whose large and difficult structure has finally been solved, paving the way for targeted therapies.

POSTECH developed self-assembled artificial microtubule like LEGO building blocks
Professor Kimoon Kim and his research team identified a new hierarchical self-assembly mechanism

How cells assemble their skeleton
Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport.

Researchers unlock secrets of cell division, define role for protein elevated in cancer
Researchers at Princeton University have successfully recreated a key process involved in cell division in a test tube, uncovering the vital role played by a protein that is elevated in over 25% of all cancers.

Computer model described the dynamic instability of microtubules
Researchers of Sechenov University together with their colleagues from several Russian institutes studied the dynamics of microtubules that form the basis of the cytoskeleton and take part in the transfer of particles within a cell and its division.

A simple way to control swarming molecular machines
The swarming behavior of about 100 million molecular machines can be controlled by applying simple mechanical stimuli such as extension and contraction.

Cancer tumours form surprising connections with healthy brain cells
Anti-epileptic medicine can curb the dangerous communication and possibly be part of future treatment.

Read More: Microtubules News and Microtubules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.