Reproducible neuroscience with real tango

September 25, 2015

Most neuroscientific studies rely on a single experiment and assume their findings to be reliable. However, the validity of this assumption needs to be tested before accepting the findings as the ground truth. Indeed, the lack of replication studies in addition to the inconsistency of neuroimaging findings severely limits the advancement of knowledge in the field of neuroscience, all of which has recently become a hot topic within the neuroscientific community.

Concerned about this state of affairs, researchers at the Finnish Centre for Interdisciplinary Music Research (CIMR), University of Jyväskylä, in Finland, and from Aarhus University, in Denmark, aimed to replicate previous findings on how the brain processes music using a novel, naturalistic free listening context. Their results, published this month in Neuroimage, demonstrate that laboratory conditions resembling real-life contexts can yield reliable results, making findings more ecologically valid. "The more we can simulate reality in a lab in a reliable way, the more true to life the findings will be, and this is critical to modelling the way the brain actually understands the world", sums up Doctoral Student Iballa Burunat, the lead author of the study.

The research team employed an identical methodology as in the original study, but using a new group of participants. As in the original study, participants had to just listen to the musical piece Adiós Nonino by A. Piazzolla. Researchers assessed how similar the observed brain activity was between the original and the new study. Replicating the experiment allowed the researchers to fine-tune the findings of the previous study, concluding what brain areas are involved in the processing of different musical elements, like tonality, timbre, and rhythm, and how accurately the neural correlates could be replicated for each of these musical elements. For instance, they observed that high level musical features, such as tonality and rhythm, were less replicable than low level (timbral) ones. "One reason for this may be that the neural processing of high?level musical features is more sensitive to state and traits of the listeners compared to the processing of low?level features, which may hinder the replication of previous findings", says Academy Professor Petri Toiviainen, from the University of Jyväskylä, a co-author of the study.

When listening to a piece of music, we can't separate its auditory characteristics from its affective, cognitive, and contextual dimensions. It is precisely the integration of all these aspects that gives coherence to our listening experience. This is why taking a more naturalistic approach makes neuroscience more faithful to reality, a goal that a fully controlled setting that uses very simple and artificially created sounds falls short of. The success in replicating these findings should encourage scientists to move towards more real life paradigms that capture the complexity of the real world.

"The neuroscientific community needs to challenge the current scientific model driven by dysfunctional research practices tacitly encouraged by the "publish or perish" doctrine, which is precisely leading to the low reliability and the high discrepancy of results", states Iballa Burunat. The authors stress that more incentives are needed for replicating experiments, and agree that scientific journals should more often than not welcome replication studies to ensure that published research is robust and reliable.
Bibliographical information: The study was supported by the Academy of Finland, TEKES, and the AivoAALTO project.

Burunat, I., Toiviainen, P., Alluri, V., Bogert, B., Ristaniemi, T., Sams, M., & Brattico, E. (2015). The reliability of continuous brain responses during naturalistic listening to music. NeuroImage, 124, 224-231. doi:10.1016/j.neuroimage.2015.09.005


Full-text free access (until the 8th of November, 2015):

Contact information:

Iballa Burunat,, tel. +358408054305, Department of Music, University of Jyväskylä, Finland.
Petri Toiviainen,, tel. +358503541753, Department of Music, University of Jyväskylä, Finland.

Academy of Finland

Related Neuroscience Articles from Brightsurf:

Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.

The evolution of neuroscience as a research
When the first issue of the JDR was published, the field of neuroscience did not exist but over subsequent decades neuroscience has emerged as a scientific field that has particular relevance to dentistry.

Diabetes-Alzheimer's link explored at Neuroscience 2019
Surprising links exist between diabetes and Alzheimer's disease, and researchers are beginning to unpack the pathology that connects the two.

Organoid research revealed at Neuroscience 2019
Mini-brains, also called organoids, may offer breakthroughs in clinical research by allowing scientists to study human brain cells without a human subject.

The neuroscience of autism: New clues for how condition begins
UNC School of Medicine scientists found that a gene mutation linked to autism normally works to organize the scaffolding of brain cells called radial progenitors necessary for the orderly formation of the brain.

Harnessing reliability for neuroscience research
Neuroscientists are amassing the large-scale datasets needed to study individual differences and identify biomarkers.

Blue Brain solves a century-old neuroscience problem
In a front-cover paper published in Cerebral Cortex, EPFL's Blue Brain Project, a Swiss Brain Research Initiative, explains how the shapes of neurons can be classified using mathematical methods from the field of algebraic topology.

Characterizing pig hippocampus could improve translational neuroscience
Researchers have taken further steps toward developing a superior animal model of neurological conditions such as traumatic brain injury and epilepsy, according to a study of miniature pigs published in eNeuro.

The neuroscience of human vocal pitch
Among primates, humans are uniquely able to consciously control the pitch of their voices, making it possible to hit high notes in singing or stress a word in a sentence to convey meaning.

Study tackles neuroscience claims to have disproved 'free will'
For several decades, some researchers have argued that neuroscience studies prove human actions are driven by external stimuli -- that the brain is reactive and free will is an illusion.

Read More: Neuroscience News and Neuroscience Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to