Nav: Home

Nanotechnology improves chemotherapy delivery

September 25, 2019

EAST LANSING, Mich. - Michigan State University scientists have invented a new way to monitor chemotherapy concentrations, which is more effective in keeping patients' treatments within the crucial therapeutic window.

With new advances in medicine happening daily, there's still plenty of guesswork when it comes to administering chemotherapy to cancer patients. Too high a dose can result in killing healthy tissue and cells, triggering more side effects or even death; too low a dose may stun, rather than kill, cancer cells, allowing them to come back, in many cases, much stronger and deadlier.

Bryan Smith, associate professor of biomedical engineering, created a process based around magnetic particle imaging (MPI) that employs superparamagnetic nanoparticles as the contrast agent and the sole signal source to monitor drug release in the body - at the site of the tumor.

"It's noninvasive and could give doctors an immediate quantitative visualization of how the drug is being distributed anywhere in the body," Smith said. "With MPI, doctors in the future could see how much drug is going directly to the tumor and then adjust amounts given on the fly; conversely, if toxicity is a concern, it can provide a view of the liver, spleen or kidneys as well to minimize side effects. That way, they could precisely ensure each patient remains within the therapeutic window."

Smith's team, which included scientists from Stanford University, used mice models to pair its superparamagnetic nanoparticle system with Doxorubicin, a commonly used chemotherapy drug. The results, published in the current issue of the journal Nano Letters, show that the nanocomposite combination serves as a drug delivery system as well as an MPI tracer.

MPI is a new imaging technology that is faster than traditional magnetic resonance imaging (MRI) and has near-infinite contrast. When combined with the nanocomposite, it can illuminate drug delivery rates within tumors hidden deep within the body.

As the nanocomposite degrades, it begins to release Doxorubicin in the tumor. Simultaneously, the iron oxide nanocluster begins to disassemble, which triggers the MPI signal changes. It will allow doctors to see more precisely how much medicine is reaching the tumor at any depth, Smith said.

"We showed that the MPI signal changes are linearly correlated with the release of Doxorubicin with near 100-percent accuracy," he said. "This key concept enabled our MPI innovation to monitor drug release. Our translational strategy of using a biocompatible polymer-coated iron oxide nanocomposite will be promising in future clinical use."

Smith has filed a provisional patent for his innovative process. In addition, the individual components of the nanocomposite Smith's team created have already earned FDA approval for use in human medicine. This should help speed FDA approval for the new monitoring method.

As the process moves toward clinical trials, which could potentially begin within seven years, Smith's team will begin testing multicolor MPI to further enhance the process's quantitative capabilities, as well as drugs other than Doxorubicin, he said.
-end-
(Note for media: Please include a link to the original paper in online coverage: https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b01202)

Michigan State University has been working to advance the common good in uncommon ways for 160 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Michigan State University

Related Tumor Articles:

Traces of immortality in tumor DNA
To gain an infinite lifespan, cancer cells need to maintain the ends of their chromosomes, known as telomeres.
Peering into the genome of brain tumor
Scientists at Osaka University have created a machine learning method for classifying the mutations of glioma brain tumors based on MR images alone.
Glutamine-blocking drug slows tumor growth and strengthens anti-tumor response
A compound developed by Johns Hopkins researchers that blocks glutamine metabolism can slow tumor growth, alter the tumor microenvironment and promote the production of durable and highly active anti-tumor T cells.
Cancer genes and the tumor milieu
In a recent study published in Cancer Research, researchers demonstrate the role of an oncogene in altering the immediate environment of tumors.
Mechanism of tumor metastasis and tumor-suppressive role of UDP-glucose revealed
Scientists from Dalian Institute of Chemical Physics (DICP) and Shanghai Institute of Biochemistry and Cell Biology (SIBCB) of the Chinese Academy of Sciences revealed that UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis.
The fluid that feeds tumor cells
MIT biologists have found that the nutrient composition of the interstitial fluid that normally surrounds pancreatic tumors is different from that of the culture medium normally used to grow cancer cells.
Insight into tumor-suppressive and tumor-promoting effects of cellular senescence
Wistar researchers have described a novel role of nicotinamide adenine dinucleotide (NAD+) metabolism in the ability of senescent cells to release tumor-promoting molecules.
A tumor cell population responsible for resistance to therapy and tumor relapse
Researchers at the Université libre de Bruxelles (ULB) uncover a tumor cell population responsible for resistance to therapy and tumor relapse in the most frequent human cancer.
New perspective on tumor genome evolution
An interdisciplinary team of scientists at the Centre for Genomic Regulation in Barcelona, Spain, deepens understanding of tumor genome evolution and suggests negative selection acting on cancer-essential genes plays a more important role than previously anticipated.
Cancer: Tumor transition states
Researchers at the Université libre de Bruxelles define for the first time the tumor transition states occurring during cancer progression and identify the tumor cell populations responsible for metastasis.
More Tumor News and Tumor Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.