Nav: Home

Nanotechnology improves chemotherapy delivery

September 25, 2019

EAST LANSING, Mich. - Michigan State University scientists have invented a new way to monitor chemotherapy concentrations, which is more effective in keeping patients' treatments within the crucial therapeutic window.

With new advances in medicine happening daily, there's still plenty of guesswork when it comes to administering chemotherapy to cancer patients. Too high a dose can result in killing healthy tissue and cells, triggering more side effects or even death; too low a dose may stun, rather than kill, cancer cells, allowing them to come back, in many cases, much stronger and deadlier.

Bryan Smith, associate professor of biomedical engineering, created a process based around magnetic particle imaging (MPI) that employs superparamagnetic nanoparticles as the contrast agent and the sole signal source to monitor drug release in the body - at the site of the tumor.

"It's noninvasive and could give doctors an immediate quantitative visualization of how the drug is being distributed anywhere in the body," Smith said. "With MPI, doctors in the future could see how much drug is going directly to the tumor and then adjust amounts given on the fly; conversely, if toxicity is a concern, it can provide a view of the liver, spleen or kidneys as well to minimize side effects. That way, they could precisely ensure each patient remains within the therapeutic window."

Smith's team, which included scientists from Stanford University, used mice models to pair its superparamagnetic nanoparticle system with Doxorubicin, a commonly used chemotherapy drug. The results, published in the current issue of the journal Nano Letters, show that the nanocomposite combination serves as a drug delivery system as well as an MPI tracer.

MPI is a new imaging technology that is faster than traditional magnetic resonance imaging (MRI) and has near-infinite contrast. When combined with the nanocomposite, it can illuminate drug delivery rates within tumors hidden deep within the body.

As the nanocomposite degrades, it begins to release Doxorubicin in the tumor. Simultaneously, the iron oxide nanocluster begins to disassemble, which triggers the MPI signal changes. It will allow doctors to see more precisely how much medicine is reaching the tumor at any depth, Smith said.

"We showed that the MPI signal changes are linearly correlated with the release of Doxorubicin with near 100-percent accuracy," he said. "This key concept enabled our MPI innovation to monitor drug release. Our translational strategy of using a biocompatible polymer-coated iron oxide nanocomposite will be promising in future clinical use."

Smith has filed a provisional patent for his innovative process. In addition, the individual components of the nanocomposite Smith's team created have already earned FDA approval for use in human medicine. This should help speed FDA approval for the new monitoring method.

As the process moves toward clinical trials, which could potentially begin within seven years, Smith's team will begin testing multicolor MPI to further enhance the process's quantitative capabilities, as well as drugs other than Doxorubicin, he said.
-end-
(Note for media: Please include a link to the original paper in online coverage: https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b01202)

Michigan State University has been working to advance the common good in uncommon ways for 160 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Michigan State University

Related Tumor Articles:

Glutamine-blocking drug slows tumor growth and strengthens anti-tumor response
A compound developed by Johns Hopkins researchers that blocks glutamine metabolism can slow tumor growth, alter the tumor microenvironment and promote the production of durable and highly active anti-tumor T cells.
Cancer genes and the tumor milieu
In a recent study published in Cancer Research, researchers demonstrate the role of an oncogene in altering the immediate environment of tumors.
Mechanism of tumor metastasis and tumor-suppressive role of UDP-glucose revealed
Scientists from Dalian Institute of Chemical Physics (DICP) and Shanghai Institute of Biochemistry and Cell Biology (SIBCB) of the Chinese Academy of Sciences revealed that UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis.
The fluid that feeds tumor cells
MIT biologists have found that the nutrient composition of the interstitial fluid that normally surrounds pancreatic tumors is different from that of the culture medium normally used to grow cancer cells.
Insight into tumor-suppressive and tumor-promoting effects of cellular senescence
Wistar researchers have described a novel role of nicotinamide adenine dinucleotide (NAD+) metabolism in the ability of senescent cells to release tumor-promoting molecules.
A tumor cell population responsible for resistance to therapy and tumor relapse
Researchers at the Université libre de Bruxelles (ULB) uncover a tumor cell population responsible for resistance to therapy and tumor relapse in the most frequent human cancer.
New perspective on tumor genome evolution
An interdisciplinary team of scientists at the Centre for Genomic Regulation in Barcelona, Spain, deepens understanding of tumor genome evolution and suggests negative selection acting on cancer-essential genes plays a more important role than previously anticipated.
Cancer: Tumor transition states
Researchers at the Université libre de Bruxelles define for the first time the tumor transition states occurring during cancer progression and identify the tumor cell populations responsible for metastasis.
Water dynamics indicate tumor status
How aggressive is a tumor? To measure the tumor status without taking tissue samples, Italian researchers have developed a method based on magnetic resonance imaging (MRI) of whole body parts.
Detailed images of tumor vasculature
Thanks to a new method of analyzing ultrasound images, conventional scanners can be used for generating high-res images of blood vessels in tumors.
More Tumor News and Tumor Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab