Nav: Home

Potential drug target for dangerous E. coli infections identified

September 25, 2020

Escherichia coli, known as E. coli, are bacteria which many people associate with causing mild food poisoning, but some types of E. coli can be fatal.

UNSW Science microbiologists studied an E. coli strain that causes a severe intestinal infection in humans: enterohemorrhagic E. coli (EHEC). Their findings were published this week in the journal PNAS (Proceedings of the National Academy of Sciences).

EHEC is a food-borne pathogen that releases Shiga toxins during infection, resulting in kidney and neurological damage.

Dr Jai Tree, the study's senior author, said the researchers' discovery of a new molecular pathway that controls Shiga toxin production was important because there was no commercially available treatment for EHEC infections.

"Antibiotic treatment of these infections is generally not recommended because antibiotics stimulate production of the Shiga toxin, leading to an increased risk of kidney failure, neurological damage, and death," Dr Tree said.

"The new pathway that we have found reduces toxin production and is not expected to be stimulated by antibiotic treatment. So, our results identify a potential new target for the development of drugs that can suppress Shiga toxin production during EHEC infection.

"It's still early days, however, and we need to conduct a lot more research to understand if our findings apply to a broad range of clinical EHEC isolates and to both types of Shiga toxins produced by human EHEC isolates."

How EHEC infections start

Dr Tree said there were several ways in which people could become infected with EHEC.

"EHEC is mainly found in the faeces of cows and sheep and people can become infected through contact with farm animals and their faeces, or via person-to-person infection if people come into contact with tiny amounts of faeces from a sick person - for example, directly or indirectly by touching contaminated surfaces," he said.

"This strain of E. coli can also spread through ingesting the bacteria by eating undercooked minced meat (for example, in hamburgers), eating contaminated fresh produce like salad vegetables, or drinking contaminated water or unpasteurised milk.

"Children under five years old and older people are at greatest risk of developing an EHEC infection."

EHEC outbreaks less common but deadly

Dr Tree said while the prevalence of EHEC was low compared to other foodborne pathogens, the disease could be very severe or even fatal. EHEC is a type of STEC (Shiga toxin-producing Escherichia coli).

"EHEC outbreaks occur sporadically in Australia and worldwide. The most significant outbreak occurred in South Australia in 1995 and was caused by contaminated mettwurst, a semi-dry fermented sausage made from raw minced pork preserved by curing and smoking," he said.

"In that outbreak, 143 people were infected - 23 of them suffered kidney and neurological damage. Many of these severe cases were in infants who suffered permanent kidney damage and later required kidney transplants.

"A four-year-old girl suffered multiple strokes and died three days after admission to hospital. This episode triggered a major food safety investigation and outbreaks since 1995 have been smaller."

Dr Tree said globally, Shiga toxin-producing E. coli was still a major food safety concern after a large outbreak in Germany in 2011.

"The strain in Germany was spread mostly via consumption of contaminated sprouts and in several cases, from close contact with an infected person," he said.

"During this outbreak more than 4000 people were infected and 50 people died."

New pathway 'hiding in plain sight'

Dr Tree said the UNSW research was the first discovery of a new pathway that controls the Shiga toxins in almost 20 years.

"In 2001, researchers at Tufts and Harvard universities first showed how production of the Shiga toxin was controlled by a bacterial virus, known as a bacteriophage, within the genome. This has been the only known pathway that controls Shiga toxin production for almost two decades," he said.

"We have extended that work to show a new mechanism of toxin control that is, surprisingly, buried within the start of the DNA sequence that encodes the Shiga-toxin messenger RNA - a working copy of the gene.

"We discovered a very short piece of the toxin messenger RNA is made into a regulatory non-coding RNA that silences the toxin and promotes growth of the pathogen."

Dr Tree said their findings were a surprise because Shiga toxin genes have been well studied, with almost 7000 published studies in the past 40 years.

"Only recently have we been able use advances in RNA sequencing technology to detect the presence of the new regulatory non-coding RNA embedded within the Shiga toxin messenger RNA," he said.

"This new regulatory non-coding RNA had been hiding in plain sight for almost 20 years."

Implications for treating EHEC infections

Dr Tree said the researchers' findings opened up new possibilities for the treatment of EHEC infections.

"Patients largely receive supportive care to manage disease symptoms and to reduce the effects of the toxin on the kidneys," he said.

"Our work shows a new mechanism for controlling toxin production that may be amenable to new RNA-based therapeutics to inhibit toxin production during an infection. We anticipate this would expand intervention options and potentially allow use of antibiotics that are currently not recommended because they stimulate Shiga toxin production.

"New treatments could therefore reduce the risk of kidney damage, neurological complications and death. We look forward to testing these new interventions in the next stage of our research."
-end-
Find the study in PNAS: https://doi.org/10.1073/pnas.2006730117

University of New South Wales

Related Rna Articles:

RNA as a future cure for hereditary diseases
ETH Zurich scientists have developed an RNA molecule that can be used in bone marrow cells to correct genetic errors that affect protein production.
Bringing RNA into genomics
By studying RNA-binding proteins, a research consortium known as ENCODE (Encyclopedia of DNA Elements) has identified genomic sites that appear to code for RNA molecules that influence gene expression.
RNA key in helping stem cells know what to become
If every cell has the same genetic blueprint, why does an eye cell look and act so differently than a brain cell or skin cell?
RNA structures by the thousands
Researchers from Bochum and Münster have developed a new method to determine the structures of all RNA molecules in a bacterial cell at once.
New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus
Researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center and New York University have developed a new kind of CRISPR screen technology to target RNA.
Discovery of entirely new class of RNA caps in bacteria
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5'RNA caps in bacteria and described the function of alarmones and their mechanism of function.
New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.
Characterising RNA alterations in cancer
The largest and most comprehensive catalogue of cancer-specific RNA alterations reveals new insights into the cancer genome.
A new approach to reveal the multiple structures of RNA
The key of the extraordinary functionality of ribonucleic acid, better known as RNA, is a highly flexible and dynamic structure.
RNA modification -- Methylation and mopping up
Ludwig-Maximilian-Universitaet (LMU) in Munich researchers have discovered a novel type of chemical modification in bacterial RNAs.
More RNA News and RNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.