PLUS takes 3D ultrasound images of solids

September 25, 2020

A new system, developed by Tohoku University researchers in Japan in collaboration with Los Alamos National Laboratory in the US, takes 3D images that can detect defects in metallic structures. The approach was published in the journal Applied Physics Letters and could enhance safety in power plants and airplanes.

Yoshikazu Ohara and colleagues at Tohoku University use non-destructive techniques to study structures, and wanted to find a way to produce 3D images of structural defects. They developed a new technology, called the piezoelectric and laser ultrasonic system (PLUS), that combines the strengths of two different devices to produce high-resolution 3D images of defects in metallic structures.

"We believe that PLUS will pave the way for accurate evaluation of material strength, the identification of defects, and finding out how defects initially started to form," says Ohara.

Currently available 'ultrasonic phased arrays' are a powerful tool for imaging internal defects in solids, but only in two dimensions. These devices are made of a piezoelectric one-dimensional array transducer with a limited number of individual elements--up to 128. Electrical pulses in the piezoelectric elements are converted to a mechanical vibration that emits ultrasonic waves into the material under investigation. Ultrasonic waves are reflected back from internal defects and converted into electric signals that can be translated into a 2D image.

In PLUS, the waves generated in a material from a piezoelectric transducer with a single element are received by a laser Doppler vibrometer, which moves around the material's surface to get a good 2D scan of the area. As a result of this process, it receives the scattered and reflected waves at a much larger number of 'points' than those that can be received by a piezoelectric array transducer. The information received by the laser Doppler vibrometer is transmitted by an oscilloscope to a computer, where it is processed by an imaging algorithm and converted into a 3D image.

"Ultrasonic phased arrays, which are on the cutting-edge of ultrasonic inspection, can only provide 2D images because of their limited number of elements," says Ohara. "PLUS makes it possible to have thousands of elements as a result of incorporating the 2D scan of a laser Doppler vibrometer in place of a piezoelectric array transducer."

Although tested only on defects in metallic materials, Ohara says their technology can be applied to other materials, including concrete and rock, simply by changing the phased array transmitter to one that emits a different range of ultrasound frequencies.

One drawback is the long data acquisition and processing time, which takes several hours. However, this can be shortened by adopting a high-speed analog-to-digital converter in place of the oscilloscope, using a more sensitive laser Doppler vibrometer, utilizing different imaging algorithms, and employing a graphical processing unit.

Tohoku University

Related Piezoelectric Articles from Brightsurf:

Swirl power: how gentle body movement will charge your mobile phone
Scientists have discovered a way to generate electricity from nylon - the stretchy fabric used widely in sportswear and other shape-hugging apparel - raising hopes that the clothes on our backs will become an important source of energy.

PLUS takes 3D ultrasound images of solids
A two-in-one technology provides 3D images of structural defects, such as those that can develop in aircraft and power plants.

Sturdy fabric-based piezoelectric energy harvester takes us one step closer to wearable electronics
KAIST researchers presented a highly flexible but sturdy wearable piezoelectric harvester using the simple and easy fabrication process of hot pressing and tape casting.

Researchers have developed the world's smallest ultrasound detector
Researchers at Helmholtz Zentrum M√ľnchen and the Technical University of Munich (TUM) have developed the world's smallest ultrasound detector.

A touch of gold sends crystals electric with excitement
A touch of gold - or another noble metal - can change the structure of a crystal and its intrinsic properties, physicists at the University of Warwick have demonstrated in a display of modern-day alchemy.

Researchers demonstrate fundamentally new approach to ultrasound imaging
Researchers have demonstrated a new technique for creating ultrasound images.

Physicists find ways to control gamma radiation
Researchers from Kazan Federal University, Texas A&M University and Institute of Applied Physics (Russian Academy of Sciences) found ways to direct high frequency gamma radiation by means of acoustics.

Shaking light with sound
Combining integrated photonics and MEMS technology, scientists from EPFL and Purdue University demonstrate monolithic piezoelectric control of integrated optical frequency combs with bulk acoustic waves.

Liquid metal synthesis for better piezoelectrics: Atomically-thin tin-monosulfide
An RMIT-UNSW collaboration applies liquid-metal synthesis to piezoelectrics, advancing future flexible, wearable electronics, and biosensors drawing their power from the body's movements.

Energy-saving servers: Data storage 2.0
A research team of Mainz University has developed a technique that will potentially halve the energy required to write data to servers and make it easier to construct complex server architectures.

Read More: Piezoelectric News and Piezoelectric Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to