New storage battery more efficient and heat-resistant

September 25, 2020

(Jena, Germany) The share of energy from renewable sources is constantly on the rise in Germany. At the beginning of 2020, for the first time ever, renewable energy was able to cover more than half of the electricity consumed in Germany. But the more important renewable energy sources become, the more urgent is the need to store the electricity produced in this way. Green energy could then also be used when the sun is not shining on the solar panels or no airflow is driving the wind turbines. To achieve this, suitable energy storage devices are indispensable. Researchers at the Friedrich Schiller University Jena (Germany) have recently developed promising new polymer electrolytes for redox flow batteries, which are flexible, efficient, and environmentally friendly. They report on their success in the current issue of the renowned research journal Advanced Energy Materials.

Huge potential of redox flow batteries

The new material developed by the Jena chemists is used in so-called redox flow batteries. "In this type of battery, the energy-storing components are dissolved in a solvent and can therefore be stored at a decentralised location, which allows the battery to be scaled as required, from a few millilitres to several cubic metres of electrolyte solution," says Prof. Dr Ulrich S. Schubert of the Center for Energy and Environmental Chemistry Jena (CEEC Jena) at the Friedrich Schiller University.

Thanks to this flexibility, redox flow batteries generally have a great potential to become an important means of energy storage in the future. Until now, however, they suffered from two weaknesses that have prevented their widespread use. The first was the frequent usage of environmentally hazardous and toxic heavy metal salts, such as vanadium dissolved in sulfuric acid, as electrolytes. The other problem was the restriction of the batteries to a maximum working temperature of 40 degrees Celsius, which necessitated the usage of an elaborate cooling system. With the help of the new material, these two problems were solved.

Cleaner, more heat-resistant, more efficient

"We have designed a new type of polymer that is soluble in water, which makes it suitable for use in an aqueous electrolyte, and that contains iron, which provides the ability to store electricity," explains Schubert. "At the same time, the polymer can cope with a significantly higher temperature of up to 60 degrees Celsius, so that the additional expense for a sensitive temperature management is eliminated." In addition, during their tests with the new system, the Jena researchers discovered that it also works more efficiently than its predecessors.

This means that electricity can be stored in a non-hazardous, water-based solution, which is then stored temporarily in tanks, and the electricity in the battery can be used again the next day without significant losses or additional effort. Systems of this kind can also be used in warmer regions, such as Africa, India or Brazil. "By improving the energy storage medium, we believe that the redox flow battery is once again in a good position to make an important contribution as the energy storage technology of the future," says Schubert. "And our development shows once again the great importance of novel polymers for the development of innovative storage methods."

Friedrich-Schiller-Universitaet Jena

Related Renewable Energy Articles from Brightsurf:

Creating higher energy density lithium-ion batteries for renewable energy applications
Lithium-ion batteries that function as high-performance power sources for renewable applications, such as electric vehicles and consumer electronics, require electrodes that deliver high energy density without compromising cell lifetimes.

Renewable energy targets can undermine sustainable intentions
Renewable energy targets (RETs) may be too blunt a tool for ensuring a sustainable future, according to University of Queensland-led research.

Intelligent software for district renewable energy management
CSEM has developed Maestro, an intelligent software application that can manage and schedule the production and use of renewable energies for an entire neighborhood.

Renewable energy transition makes dollars and sense
New UNSW research has disproved the claim that the transition to renewable electricity systems will harm the global economy.

Renewable energy advance
In order to identify materials that can improve storage technologies for fuel cells and batteries, you need to be able to visualize the actual three-dimensional structure of a particular material up close and in context.

Illuminating the future of renewable energy
A new chemical compound created by researchers at West Virginia University is lighting the way for renewable energy.

Using fiber optics to advance safe and renewable energy
Fiber optic cables, it turns out, can be incredibly useful scientific sensors.

Renewable energy developments threaten biodiverse areas
More than 2000 renewable energy facilities are built in areas of environmental significance and threaten the natural habitats of plant and animal species across the globe.

Could water solve the renewable energy storage challenge?
Seasonally pumped hydropower storage could provide an affordable way to store renewable energy over the long-term, filling a much needed gap to support the transition to renewable energy, according to a new study from IIASA scientists.

Scientists take strides towards entirely renewable energy
Researchers have made a major discovery that will make it immeasurably easier for people (or super-computers) to search for an elusive 'green bullet' catalyst that could ultimately provide entirely renewable energy.

Read More: Renewable Energy News and Renewable Energy Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to