Bacterial communities found to follow water

September 26, 2001

Miraculous things happen to the desert when it rains - everything changes from brown to green and organisms that have not been seen for months make a brief .emergence from underground lairs.

In fact, even the desert's soil turns visibly green following the rare desert rain, as hidden filaments of photosynthesizing cyanobacteria suddenly hydrate. Lying a few millimeters deep, these primitive prokaryotes quickly glide upward, migrating en mass to the surface for an hour or so of light exposure until the dirt begins to dry. Then, just as suddenly, they return again to the subsurface, where they begin the long wait for the next rain.

The existence of such "cryptic" communities of microbes has long been known, and it has long been assumed that the organisms' behavior can be explained by common light-responsive behavior. Now, a new finding by Arizona State University microbial ecologist Ferran Garcia-Pichel and Olivier Pringault of the Biological Oceanography Laboratory at the University of Bordeaux shows that phenomenon is actually more complicated, with significant implications for the behavior and ecology of other underground microbes. The research is reported in the September 27 issue of the journal Nature.

Observing several different species of soil crust-inhabiting cynobacteria, the team found that the bacteria's movements were affected by the presence or absence of water, not just light - the first time such behavior has ever been observed in bacteria.

According to Garcia-Pichel, the team was first intrigued by a "serendipitous" field observation. "What we discovered was that when one of these wetting events took place, the cyanobacteria came up to the surface of the soil. But once the soil started drying out, the cyanobacteria returned to the subsurface though the light didn't change. Essentially nothing changed except the availability of water," he said.

Subsequently, the bacteria were moved to a laboratory setting and were tested under controlled lighting conditions, using microprobes to measure the relation of bacterial movement to water content in the soil surface. Test results showed clearly that the bacteria "tracked" the water.

"These migrations are really population migrations that occur in millimeter scale -- close to 100 percent of the population will come up to the surface," Garcia-Pichel noted. "Their tendency to track the water overwhelms their tendency to track the light. We've never seen this before."

Water, Garcia-Pichel hypothesizes, is critical to the bacteria not just for metabolism, but also for movement. "They go down because by tracking the water, they protect themselves. They will get dry eventually, and when they get dry they can't move. At the surface they would be more subject to hazardous conditions." Garcia-Pichel points out that the finding may have large implications for investigating the ecology of the still poorly understood bacterial species that live deep beneath the earth's surface.

"Once traits like this are found, they're usually not restricted to one organism. We've seen this in a variety of cyanobacteria. If this really a widespread ability of bacteria, it also has implications on how we understand the bacterial communities in the deep subsurface. Bacterial communities may be following water in the subsurface over large distances," he said.

Similarly, there are implications for locating life in another extreme environment - Mars. Though cyanobacteria are among the most primitive living things, they have developed sophisticated skills for dealing with an environment where water is both scarce and transitory.

"Desert soils are one of the earthly ecosystems that may have some significance on Mars. If Mars had some water in the past, then these desiccation-resistant environments are probably going to be the last to have existed there. This is one of the most likely ecosystems to have left an imprint that we can find some evidence for," Garcia-Pichel said.
The research was funded by a grant from the U.S. Department of Agriculture.

Source: Ferran Garcia-Pichel, 480-727-7534.

Arizona State University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to