Scientists trap hydrogen gas in ice 'cages' - implications for fuel cells and space science

September 26, 2002

Until recently, scientists thought that molecular hydrogen (H2) was too small to be contained in clathrate hydrates - crystalline solids where a framework of water molecules enclose molecules of gas. Now, researchers at the Carnegie Institution of Washington's Geophysical Laboratory, University of Chicago, and Los Alamos National Laboratory, have been able to trap the gas inside water-ice structures forming hydrogen hydrate. According to team member Ho-kwang (Dave) Mao, "This result could be a first step toward an alternative way of storing environmentally friendly hydrogen gas. It also points to the possibility that hydrogen might exist in icy bodies in our solar system that we thought were incapable of retaining it." The scientists report their findings in the September 27, 2002, issue of Science.

Hydrogen is the most abundant gas in the universe and the race has been on to find a cost-efficient, practical way to store it for fuel use. Using a diamond-anvil cell, the researchers subjected a mixture of hydrogen and water to a pressure equivalent to about 2,000 times the atmospheric pressure at sea level (220 megapascals) at room temperature (300 K or 80°F). Two regions formed --an H2 bubble and liquid water. When the mixture was cooled to minus 11°F (249 K) the two regions reacted and formed one solid compound.

Unlike most clathrate hydrates, where only one molecule of a gas can be trapped in each of the H2O cages, multiple hydrogen molecules were entrapped in this material--two molecules in small cages and four in larger ones. The synthesized material "showed remarkable stability," persisting when warmed to about 45°F (280K). Upon cooling to liquid nitrogen temperature (77 K, -321°F) and releasing pressure completely, the clathrate remained.

"Many microorganisms that appear to be ancient 'breathe' hydrogen," says Wesley Huntress, director of Carnegie's Geophysical Lab and former NASA Associate Administrator for Space Science. "The ability of water to trap hydrogen may also be significant for biology on the early Earth, providing a potential mechanism to supply this gas to the atmosphere at a time when life was just beginning on this planet. "
-end-
Researchers on this project include the following: Wendy Mao, Univ. of Chicago and Carnegie Institution of Washington; Ho-kwang Mao, Alexander Goncharov, Viktor Struzhkin, Quanzhong Guo, Jingzhu Hu, Jinfu Shu, and Russell Hemley, Carnegie Institution of Washington; Maddury Somayazulu, HPCAT Advanced Photon Source, Argonne Nat'l Lab; Yusheng Zhao, Los Alamos Nat'l Lab.

The Carnegie Institution of Washington (www.CarnegieInstitution.org) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments in the U.S.: Plant Biology, Global Ecology, The Observatories, Embryology, the Department of Terrestrial Magnetism, and the Geophysical Laboratory.

For a copy of the paper contact scipak@aaas.org, or call 202-326-6440
For more information contact Russell Hemley at 202-478-8951, e-mail Hemley@gl.ciw.edu; or Wendy Mao, phone at 202-321-8899 before 9/26, 773-456-6325 after 9/26, e-mail wmao@uchicago.edu

Carnegie Institution for Science

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.