Report assessing impact of soot on global warming could alter control strategies

September 26, 2002

A new report on the role that atmospheric soot particles may play in global warming suggests a new near-term control strategy, introduces a new element of uncertainty in climate models and shifts more responsibility for curbing pollution to developing nations such as China and India.

To be published in the September 27 issue of the journal Science, the report suggests that by absorbing sunlight and altering weather patterns, light absorbing carbon-based particles produced by diesel engines, cooking fires and other sources could have nearly as much impact on global warming as carbon dioxide -- a greenhouse gas that has long been considered the primary culprit in global warming.

In a perspectives article published with the report, atmospheric researchers at the Georgia Institute of Technology describe some of the report's policy implications. Among them: "The study reported this week in Science really raises some important policy issues regarding soot, said Michael Bergin, an assistant professor in Georgia Tech's School of Earth and Atmospheric Sciences and co-author of the perspectives article. "In the past, researchers have felt that soot didn't really have a significant warming effect. But as we've learned more about the amount of black carbon emitted by countries like China and India, it appears now that soot could have important climate effects, and that these effects may be almost as much as those of carbon dioxide."

In their perspectives article, Bergin and Professor William Chameides point out the differences between black carbon soot and greenhouse gases such as carbon dioxide and methane. For instance, soot particles are removed from the atmosphere on time scales of weeks to months, while carbon dioxide lingers for hundreds of years. That could point toward a better near-term control strategy.

"This could be 'low-hanging fruit' in trying to deal with the anthropogenic (human-caused) effects on the climate," Bergin noted. "From a policy standpoint, the payoff for controlling soot could be on the scale of years rather than centuries."

Black carbon creates its warming effect through an entirely different mechanism than greenhouse gases, which act as an insulating blanket to keep heat within the earth's atmosphere. Black carbon absorbs light from the sun, converting that to heat. The effect varies, depending upon what is beneath the carbon particles.

If a light-colored surface lies below the carbon particles, the heating effect is increased as incoming photons heat the particles on their way toward the surface, then heat them again as they reflect off the land or clouds. The particles are also involved in cloud formation which impacts precipitation patterns. Those weather changes, seen in regions of China and India with large soot emissions, may in turn affect the global climate.

"There are a lot of possible atmospheric effects from soot," Bergin said. "We really don't yet understand all the feedback cycles involved."

In fact, researchers are just beginning to learn about black carbon soot - and even to agree on what it is. Formed by the incomplete combustion from diesel engines, cooking fires and coal burning, black carbon can take different forms. Depending on the specifics of the combustion process, soot can take many different forms from spherical particles to chain agglomerates.

"The nature of the particles and how they absorb light could be different," Bergin explained. "So one gram of soot from one part of the world could be different from a gram of soot from another part of the world. We are really at the beginning of trying to understand the influences of soot on climate. Right now, there is a great deal of uncertainty in any estimate of the climatological impact of soot."

A key uncertainty is the amount of soot going into the atmosphere. Localized studies in China and India, where crops wastes are burned for heating and cooking, show very high levels. In developed nations, elevated soot levels are found in urban areas - which have often been excluded from climate studies to avoid confusing global climate change with the local "urban heat island" effect.

Because nations such as China and India produce so much black carbon, a new focus on this pollutant could shift control responsibility to the developing nations. Controlling soot emissions would include developing more efficient combustion techniques, both for biomass burning and diesel engines, Bergin added.

The Science report calls into question the accuracy of global climate change models, which have not considered the effects of black carbon.

"This creates some opportunities for climate modelers to revise their approaches and to add a potentially important anthropogenic climate forcing agent to their models," said Bergin. "We now have an opportunity to include more of the important anthropogenic effects. It could be that there are other feedback cycles in the global climate system that we don't understand."

Controlling soot could have an impact broader than global climate change. The tiny particles that appear to be most active in absorbing radiation are of the size implicated in causing human health effects because they can lodge deeply in the lungs.

"These health impacts could make it politically much easier for policy-makers to enact the kinds of controls needed," said Bergin. "The control strategy could provide a double-whammy by increasing the health of both human beings and the environment."
-end-
For technical information, contact Michael Bergin (404-894-9723; E-mail: (mike.bergin@ce.gatech.edu)

Georgia Tech Research News and Research Horizons magazine, along with high-resolution JPEG images, can be found on the Web at www.gtresearchnews.gatech.edu

Georgia Institute of Technology Research News

Related Global Warming Articles from Brightsurf:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.

Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.

Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.

Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.

Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.

Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.

Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.

Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.

Read More: Global Warming News and Global Warming Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.