Study identifies gene in mice that may control risk-taking behavior in humans

September 26, 2005

SEATTLE - One teenager likes to snowboard off a cliff. Another prefers to read a book and wouldn't think of trading places. Why these differences exist is a mystery, but for the first time researchers have identified a possible genetic explanation behind risk-seeking behavior.

Scientists at Fred Hutchinson Cancer Research Center have found that a specific neurodevelopmental gene, called neuroD2, is related to the development of an almond-shaped area of the brain called the amygdala, the brain's emotional seat. This gene also controls emotional-memory formation and development of the fear response, according to research led by James Olson, M.D., Ph.D., associate member of the Clinical Research Division at the Hutchinson Center.

The findings will be published in the early online edition of the Proceedings of the National Academy of Sciences the week of Sept. 26. Olson and colleagues studied mice with a single copy of the neuroD2 gene and found they had an impaired ability to form emotional memories and conditioned fear.

"Most of us are familiar with the fact that we can remember things better if those memories are formed at a time when there is a strong emotional impact - times when we are frightened, angry or falling in love," he said. "That's called emotional-memory formation. The amygdala is the part of the brain that is responsible for formation of emotional memory."

In the brain's early development, the neuroD2 gene encodes the neuroD2 protein to transform undifferentiated stem cell-like cells into neurons, or brain cells. Under the microscope, certain areas of the amygdala were absent in mice with no neuroD2 gene. In mice with just one copy of neuroD2, researchers also found fewer nerve cells in the amygdala.

Researchers conducted experiments on mice with a single copy of the neuroD2 gene to test the theory that only having one copy of the gene impacts emotional learning and the development of traits such as fear and aggression. Long-term behavioral studies of mice with no neuroD2 genes were not possible because these mice die within a few weeks of birth.

In one experiment, mice were exposed to an adverse stimulus coupled with a non-adverse stimulus, a tone followed by a mild foot shock. Normal mice crouch down and stop moving the next time they hear the tone, a physiologic response that indicates they expected a shock. The mice remembered the experience. However, those with a single copy of the neuroD2 gene did not respond to the tone like the normal mice did, researchers found. These mice did not freeze their movements as often in anticipation of the mild shock.

To assess the level of unconditioned fear in mice with a single copy of the neuroD2 gene, researchers put them into a situation that would elicit a fear response in normal mice. They used a maze elevated 40 centimeters above a tabletop where mice had the option to walk along narrow, unprotected walkways or arms with protective walls. Half of the time the neuroD2-deficient mice chose the unprotected arms, whereas the normal mice almost always chose the protected arms, Olson said.

"All of this matches very well with previous observations that the amygdala is responsible for fear, anxiety and aggression," said Olson. "Now we're seeing that the neuroD2-deficient mice, when compared to normal littermates, show a profound difference in unconditioned anxiety levels as well as their ability to form emotional memories."

Olson noted that the dosage of neuroD2, one copy versus the normal two copies, was important for how much fear, anxiety and aggression the mice displayed.

"These findings are new to science," said Olson, who is also an associate professor in pediatrics at the University of Washington School of Medicine. "The contribution we have made is showing that neuroD2 is related to the development of the amygdala. This is the first time that a specific neurodevelopmental gene has been related to these emotional activities in the brain."

Further research is needed that one day could explain why some people react the way they do to fear, or why they take risks, Olson said. "The question is, are there differences in the neuroD2 gene-coding sequence or differences downstream of the neuroD2 pathway during brain development that could affect either psychiatric or emotional functions in humans? It's a completely unexplored question; it is the immediate next question you would go to if you want to understand how this gene impacts human behavior."
-end-
The National Institutes of Health and the Burroughs Wellcome Career Award in the Biomedical Sciences funded the research. Note for media only: A copy of the paper, "The dosage of the neuroD2 transcription factor regulates amygdala development and emotional learning," is available to reporters registered with EurekAlert or by contacting the Proceedings of the National Academy of Sciences, (202) 334-1310 or PNASnews@nas.edu

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org.

Fred Hutchinson Cancer Research Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.