Molecule walks like a human

September 26, 2005

RIVERSIDE, Calif.-- A research team, led by UC Riverside's Ludwig Bartels, is the first to design a molecule that can move in a straight line on a flat surface. It achieves this by closely mimicking a human walking. The "nano-walker" offers a new approach for storing large amounts of information on a tiny chip and demonstrates that concepts from the world we live in can be duplicated at the nanometer scale -- the scale of atoms and molecules.

The molecule -- 9,10-dithioanthracene or "DTA" -- has two linkers that act as feet. Obtaining its energy from heat supplied to it, the molecule moves such that only one of the linkers is lifted from the surface; the remaining linker guides the motion of the molecule and keeps it on course. Alternating the motions of its two "feet," DTA is able to walk in a straight line without the assistance of nano-rails or nano-grooves for guidance.

The researchers will publish their work in next month's issue of Physical Review Letters.

"Similar to a human walking, where one foot is kept on the ground while the other moves forward and propels the body, our molecule always has one linker on the surface it is on, which prevents the molecule from stumbling to the side or veering off course," said Bartels, assistant professor of chemistry and a member of UCR's Center for Nanoscale Science and Engineering. "In tests, DTA took more than 10,000 steps without losing its balance once. Our work proves that molecules can be designed deliberately to perform certain dynamic tasks on surfaces."

Bartels explained that, ordinarily, molecules move in every unpredictable direction when supplied with thermal energy. "DTA only moves along one line, however, and retains this property even if pushed or pulled aside with a fine probe." Bartels said. "This offers an easy realization of a concept for molecular computing proposed by IBM in the 1990s, in which every number is encoded by the position of molecules along a line similar to an abacus, but about 10 million times smaller. IBM abandoned this concept, partly because there was no way to manufacture the bars of the abacus at molecule-sized spacing.

"DTA does not need any bars to move in a straight line and, hence, would allow a much simpler way of creating such molecular memory, which would be more than 1000 times more compact than current devices."

The UCR research team is now trying to build a molecular ratchet, which would convert random thermal oscillation into directed motion. "It would be similar to an automatic watch that rewinds itself on the arm of the bearer -- except that it would be just one nanometer in diameter," Bartels said.

A nanometer is one billionth of a meter. A nanometer is to a meter what an inch is to 15,783 miles, more than half the distance around the Earth's equator.

Bartels was assisted in the study by Ki-Young Kwon, Kin L. Wong and Greg Pawin of UCR; and Sergey Stolbov and Talat S. Rahman of Kansas State University. The US Department of Energy funded the research. Additional support came from the Petroleum Research Fund and the Air Force Office of Scientific Research. The San Diego Supercomputer Center provided computational resources.
The University of California, Riverside is a major research institution and a national center for the humanities. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of nearly 17,000, the campus is projected to grow to 21,000 students by 2010. Located in the heart of inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region's economic development. Visit or call 951-UCR-NEWS for more information. Media sources are available at

University of California - Riverside

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to