Nav: Home

TU Delft: cheap and efficient solar cell made possible by linked nanoparticles

September 26, 2011

Researchers of the Chemical Engineering department and the Kavli institute of Delft University of Technology in the Netherlands have demonstrated that electrons can move freely in layers of linked semiconductor nanoparticles under the influence of light. This new knowledge will be very useful for the development of cheap and efficient quantum dot solar cells. The researchers published their findings on Sunday 25 September on the website of the scientific journal Nature Nanotechnology.

Cheap and efficient

The current crystalline silicon solar panels are expensive to produce. Cheaper solar cells are available, but these are inefficient. For example, an organic solar cell has a maximum efficiency of 8%. One way of increasing the efficiency of cheap solar cells is the use of semiconductor nanoparticles, quantum dots. In theory, the efficiency of these cells can be increased to 44%. This is in part due to the avalanche effect, demonstrated by researchers from TU Delft and the FOM Foundation in 2008. In the current solar cells, an absorbed light particle can only excite one electron (creating an electron-hole pair), while in a quantum dot solar cell a light particle can excite several electrons. The more electrons that are excited, the greater the efficiency of the solar cell.

Linked nanoparticles

Up to now, the creation of electron-hole pairs under the influence of light was only demonstrated within the limits of a quantum dot. To be usable in solar cells, it is essential that electrons and holes are able to move. This is what creates an electrical current that can be collected at an electrode. Researchers from the same research group have now demonstrated that the electron-hole pairs can also move as free charges between the nanoparticles. To this end they linked nanoparticles together, using very small molecules, so that they were very densely clustered while still remaining separate from each other. The nanoparticles are so close together that every single light particle that is absorbed by the solar cell actually causes electrons to move.
-end-


Delft University of Technology

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
Better contrast agents based on nanoparticles
Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging.
Gentle cancer treatment using nanoparticles works
Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Nanoparticles can grow in cubic shape
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles.
Nanoparticles deliver anticancer cluster bombs
Scientists have devised a triple-stage 'cluster bomb' system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.

Related Nanoparticles Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...