Nav: Home

How forest fires spoil wine

September 26, 2017

If wine is cultivated in an area where forest fires occur more often, such as in Australia or Southern Italy, aromas that make the alcoholic drink unpalatable can develop in the finished product. Until now, it wasn't known why this is so and what happens at the molecular level. A team at the Technical University of Munich (TUM) is now describing the reason why the smoke aromas are stored in the grapes and is thus showing the way for growers to eliminate this degradation in quality.

In the case of wine production, it is not initially clear whether there was a fire near the vineyard from which the grapes come. Only when opening a bottle of wine is a strong off-note perceived. "The smell and taste of such a wine is then often described with the term ash or ashtray," says scientist Katja Härtl. "This leads to a strong reduction in the quality of the wine."

Those now thinking of barrique-produced wines, which taste "smokey" to some people, will learn from the scientist that it's not comparable to that. Yet what's happening in the fruit? A study got to the bottom of this smoky taste and is now described by Professor Wilfried Schwab and his team from the Professorship for the Biotechnology of Natural Products at the TUM in the Journal of Agricultural and Food Chemistry.

Give the aroma sugar!

Aromatic substances are volatile and in nature are attached to sugar, for example in plants. The aroma can be retained or stabilized with this sugary compound. The aromatic substance can then once again be detached from the sugar and released. This process is called glycosylation. It describes a series of chemical or enzymatic reactions, for example, in which carbohydrates are bound to small, hydrophobic compounds such as aromas. An enzyme called glycosyltransferase is responsible for this.

If grape vines are exposed to bush fires, as happens more often in Australia, Southern Italy and California, the grape vine absorbs the smoky aromas via its leaves and fruits. In the plant, the off-notes are then linked with sugar molecules by a glycosyltransferase - a protein that acts as a biocatalyst. This link with sugar molecules makes the smoky off-notes more water-soluble. As a result, the grape vine stores the now no longer volatile smoke aromas.

Smoke aromas are assimilated instead of resveratrol

But why does the glycosyltransferase process these foreign substances? The team led by Prof. Schwab has an explanation for this as well: "Actually, the job of glycosyltransferase is to process the resveratrol." Because resveratrol, a substance with a health promoting effect, is naturally contained in the grape vine and in terms of its structure resembles the smoky aroma molecules. As long as the grapes haven't been harvested yet, the stinking smoke molecules are bound and the ashy smell and taste can't be noticed.

During fermentation, however, the wine yeast added by the fermentation process once again separates the sugar molecules and the smell develops. "Therefore, it only becomes apparent in the finished wine that the vineyard was exposed to a fire and the final product is of poor quality," first author Katja Härtl explains. Because the glycosyltransferase ensured that foreign aromas that are not desired by the customer were incorporated with the smoke molecules.

"We now know how such a taste can develop," Prof. Wilfried Schwab says. "In the next step, we can try to cultivate either grape vines with less glycosyltransferase. Or we'll add a second sugar to prevent the release of the bad aromas." Alternatively, yeasts that are not capable of releasing the smoke aromas could also be used during fermentation. The gene responsible for this could also be removed, which, however, consumers here in this country tend to reject.

The investigation of the molecular mechanism leading to the formation of undesirable aromas in wine is now allowing vintners to take various counter-measures to ensure the quality of the alcoholic beverage.
-end-
Publication: Katja Haertl, Fong-Chin Huang, Ashok P. Giri, Katrin Franz-Oberdorf, Johanna Frotscher, Yang Shao, Thomas Hoffmann, and Wilfried Schwab: Glucosylation of Smoke-Derived Volatiles in Grapevine (Vitis vinifera) is Catalyzed by a Promiscuous Resveratrol/Guaiacol Glucosyltransferase, Agric. Food Chem. 2017, 65 (28), pp 5681-5689.
DOI: 10.1021/acs.jafc.7b01886
Link: http://pubs.acs.org/doi/abs/10.1021/acs.jafc.7b01886

Contact: Prof. Dr. Wilfried Schwab
Technical University of Munich
Biotechnology of natural products
Phone: +49 8161 71 2912
Mail: wilfried.schwab@tum.de

Technical University of Munich (TUM)

Related Resveratrol Articles:

Eelgrass acid and resveratrol produced by cell factories for the first time
Scientists are now able to produce a wide range of sulfated aromatic compounds such as antifouling eelgrass acid, resveratrol and vanillic acid derivatives using microbial production hosts.
Compound found in red wine opens door for new treatments for depression, anxiety
A new University at Buffalo-led study has revealed that the plant compound resveratrol, which is found in red wine, displays anti-stress effects by blocking the expression of an enzyme related to the control of stress in the brain.
Red wine's resveratrol could help Mars explorers stay strong, says Harvard study
Mars is about 9 months from Earth with today's tech, NASA reckons.
A grape constituent protects against cancer
Lung cancer is the deadliest form of cancer, and 80 percent of death are related to smoking.
Is resveratrol an effective add-on to NSAIDS to treat knee osteoarthritis?
In what researchers state is the first pilot clinical trial to assess the effects of resveratrol on pain severity and levels of inflammatory biomarkers in patients with mild to moderate knee osteoarthritis, the scientists compared treatment with a nonsteroidal anti-inflammatory drug (NSAID) combined with either resveratrol or placebo over 90 days.
Substance found in grapes prevents agglomeration of a mutant protein that leads to cancer
A novel Brazilian study published in Oncotarget is the first to show the action of resveratrol, a bioactive compound present in grapes and red wine, on the inhibition of aggregates of the mutant p53 protein.
Metabolites of Resveratrol (Longevinex) pass through blood-ocular barriers in humans
On the heels of a study published last year that showed the red wine molecule resveratrol and its metabolites are found in human cerebrospinal fluid and therefore penetrate the blood-brain barrier, for the first time metabolites of the red wine molecule resveratrol have been detected in ocular tissues of humans as well.
University of Alberta research may provide solutions for the future treatment of diabetes
In a study published in the journal Diabetes, researchers at the University of Alberta found that feeding resveratrol to obese mice over a period of 6 weeks altered the makeup of the bacteria in their intestines, improving glucose tolerance.
Resveratrol preserves neuromuscular synapses, muscle fibers in aging mice
red wine, and metformin, a drug often prescribed to fight type 2 diabetes, have many of the neuroprotective benefits of a low-calorie diet and exercise.
Resveratrol may be an effective intervention for lung aging
In a study led by Barbara Driscoll, Ph.D., of The Saban Research Institute of Children's Hospital Los Angeles, researchers demonstrate, for the first time that inhaled resveratrol treatments slow aging-related degenerative changes in mouse lung.
More Resveratrol News and Resveratrol Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.