AI identifies genes linked to heart failure

September 26, 2019

Genetic research led by Queen Mary University of London could open the way to earlier identification of people at risk of heart failure and to the development of new treatments.

The Queen Mary University of London team applied an artificial intelligence (AI) technique to analyse the heart MRI images of 17,000 healthy UK Biobank volunteers. They found that genetic factors accounted for 22-39 per cent of variation in the size and function of the heart's left ventricle, the organ's main pumping chamber. Enlargement and reduced pumping function of the left ventricle can lead to heart failure.

The research, which was part-funded by the Wellcome Trust and the British Heart Foundation and published today in the journal Circulation, suggests that genetic factors significantly influence the variation in heart structure and function. The team identified or confirmed 14 regions in the human genome associated with the size and function of the left ventricle - each containing genes that regulate the early development of heart chambers and the contraction of heart muscle.

Lead researcher Dr Nay Aung from Queen Mary University of London, said: "It is exciting that the state-of-the-art AI techniques now allow rapid and accurate measurement of the tens of thousands of heart MRI images required for genetic studies. The findings open up the possibility of earlier identification of those at risk of heart failure and of new targeted treatments. The genetic risk scores established from this study could be tested in future studies to create an integrated and personalised risk assessment tool for heart failure.

"The AI tool allowed us to analyse images in a fraction of the time it would otherwise have taken. Our academic and commercial partners are further developing these AI algorithms to analyse other aspects of cardiac structure and function. This should translate to time and cost savings for the NHS and could potentially improve the efficiency of patient care."

Steffen Petersen, Professor of Cardiovascular Medicine at Queen Mary University of London, who also worked on the project, said: "Previous studies have shown that differences in the size and function of the heart are partly influenced by genes but we have not really understood the extent of that genetic influence. This study has shown that several genes known to be important in heart failure also appear to regulate the heart size and function in healthy people. That understanding of the genetic basis of heart structure and function in the general population improves our knowledge of how heart failure evolves.

"The study provides a blueprint for future genetic research involving the heart MRI images in the UK Biobank and beyond."

Patricia Munroe, Professor of Molecular Medicine at Queen Mary University of London, who also worked on the project, said "High fidelity MRI measures combined with genetics is reassuringly validating many known heart structural proteins, but our work also finds new genes from more heritable functional measures that are associated with ventricular remodelling and fibrosis. Further genetic studies including analyses of additional heart MRI chambers are expected to provide deeper insights into heart biology."

It is expected that many more genetic markers for cardiac conditions will be identified as the UK Biobank database grows. Earlier this month UK Biobank announced it will begin sequencing the whole human genome of 450,000 participants, following the success of the pilot sequencing programme in 50,000 participants.
-end-
For more information, please contact: Chris Mahony Communications Executive (School of Medicine and Dentistry) Queen Mary University of London
[E-mail] c.mahony@qmul.ac.uk
Tel: +44 0207 8825315 / +44 (0)781 2692722

Notes to the editorAbout Queen Mary University of London

Queen Mary University of London (QMUL) is one of the UK's leading universities, and one of the largest institutions in the University of London, with 20,260 students from more than 150 countries.

A member of the Russell Group, we work across the humanities and social sciences, medicine and dentistry, and science and engineering, with inspirational teaching directly informed by our research - in the most recent national assessment of the quality of research, we were placed ninth in the UK (REF 2014).

We also offer something no other university can: a stunning self-contained residential campus in London's East End. As well as our home at Mile End, we have campuses at Whitechapel, Charterhouse Square and West Smithfield dedicated to the study of medicine, and a base for legal studies at Lincoln's Inn Fields.

We have a rich history in London with roots in Europe's first public hospital, St Barts; England's first medical school, The London; one of the first colleges to provide higher education to women, Westfield College; and the Victorian philanthropic project, the People's Palace based at Mile End.

QMUL has an annual turnover of £350m, a research income worth £100m, and generates employment and output worth £700m to the UK economy each year.

Queen Mary University of London

Related Heart Failure Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.

Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.

Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population

Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.

Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.

Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.

How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.

Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.

Read More: Heart Failure News and Heart Failure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.