Nav: Home

Cause of antibiotic resistance identified

September 26, 2019

Scientists have confirmed for the first time that bacteria can change form to avoid being detected by antibiotics in the human body.

Studying samples from elderly patients with recurring urinary tract infections, the Newcastle University team used state-of-the art techniques to identify that a bacteria can lose its cell wall - the common target of many groups of antibiotics.

The research by the Errington lab which turns on its head current thinking about the bacteria's ability to survive without a cell wall, known as "L-form switching", is published today in Nature Communications.

The World Health Organisation has identified antibiotic resistance as one of the biggest threats to global health, food security, and development today.

Lead author, Dr Katarzyna Mickiewicz researcher at Newcastle University said: "Imagine that the wall is like the bacteria wearing a high-vis jacket. This gives them a regular shape (for example a rod or a sphere), making them strong and protecting them but also makes them highly visible - particularly to human immune system and antibiotics like penicillin.

"What we have seen is that in the presence of antibiotics, the bacteria are able to change from a highly regular walled form to a completely random, cell wall-deficient L-form state- in effect, shedding the yellow jacket and hiding it inside themselves.

"In this form the body can't easily recognise the bacteria so doesn't attack them - and neither do antibiotics."

L-form - flimsy but survives

The research which used samples obtained through a collaboration with clinicians at the Newcastle Freeman Hospital part of Newcastle upon Tyne Hospitals Foundation Trust organised by Dr Phillip Aldridge and Dr Judith Hall shows that when antibiotics are present - such as in a patient with a UTI receiving penicillin or other cell wall-targeting antibiotic - then the bacteria has the ability to change form, losing the cell wall which is often the target of the antibiotic.

In a previous publication, which appeared in Cell in 2018 (10.1016/j.cell.2018.01.021), the Errington team demonstrated that our immune system can also to some extend induce L-form switching but treatment with antibiotics have a much more profound effect. Current study showed that L-forms of various bacterial species typically associated with UTIs including E. coli, Enterococcus, Enterobacter and Staphylococcus were detectable in 29 out of 30 patients involved in the study.

In this L-form the bacteria are flimsy and weaker but some survive, hiding inside the body.

The research also captured on video for the first time, L-form bacteria isolated from a patient with UTI re-forming a cell wall after the antibiotic had gone - taking just 5 hours. The team was also able to show by a direct microscopy in transparent zebrafish model, that the L-form switching is possible in the context of whole living organism and not only in artificial conditions in the lab.

Dr Mickiewicz explained: "In a healthy patient this would probably mean that the L-form bacteria left would be destroyed by their hosts' immune system. But in a weakened or elderly patient, like in our samples, the L-form bacteria can survive. They can then re-form their cell wall and the patient is yet again faced with another infection. And this may well be one of the main reasons why we see people with recurring UTIs.

"For doctors this may mean considering a combination treatment - so an antibiotic that attacks the cell wall then a different type for any hidden L-form bacteria, so one that targets the RNA or DNA inside or even the surrounding membrane."

Diagnosis

The research also found that L-form bacteria is difficult to identify by traditional methods used in hospital as the gel used in effect "pops" the bacteria as they are put into it.

A special osmoprotective detection method was needed to support the weaker L-form bacteria, enabling them to be identified in the lab.

The team will be furthering the research with trials in patients who have had treatment.
-end-
Reference: Possible role of L-form switching in recurrent urinary tract infection. Katarznya Mickiewicz et al. DOI: 10.1038/s41467-019-12359-3

Newcastle University

Related Immune System Articles:

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.