Nav: Home

New function in a protein of plants essential to developing drought-tolerant crops

September 26, 2019

Researchers of the Universitat Politècnica de València (UPV) and the University of Málaga (UMA) have discovered a new function in the BAG4 plant protein. In the study, they prove that this protein takes part in the regulation of the plant transpiration, the transport of potassium in occlusive cells and thus, the opening of the stomas, the pores located on leaves, from where the plant transpires. This finding is particularly significant for developing crops that are more resistant to drought conditions. Their work has been published in the Plant Physiology journal.

In the study, in which the French center BPMP (Biochimie et Physiologie Moléculaire des Plantes) has also participated, the researchers did an analysis of proteins that are able to physically interact with the channel that regulates how potassium enters the occlusive cells of the plant-known as KAT1-and later they studied how this protein regulated the KAT1 function.

"KAT1 is responsible for the potassium entering the occlusive cells, which directly affects the opening of the stomas and, finally, the plant transpiration. Our aim was focused on knowing how the transport of potassium is regulated in order to improve it in the future," explains Antonella Locascio, researcher at the Institute for Plant Molecular and Cellular Biology (IBMCP), a joint center between UPV and CSIC.

In order to do that, the team of UPV, the University of Málaga and BPMP looked for proteins that directly interact with the KAT1 channel, using Arabidopsis thaliana as a model plant. "We did a biochemical and genetic study of the BAG4 protein to assess its interaction with and effect on the channel. From this study, we discovered that the presence of this protein significantly improves the transport of potassium, contributing to it arriving at the plasma membrane of plants," explains Lynne Yenush, researcher at IBMCP (UPV-CSIC).

According to the researchers, the identification of physiologically significant regulators, in this case, the BAG4 protein, opens up the door to new strategies to obtain plants more resistant to stressful water situations and less vulnerable to the action of several pathogens.

"Stomas are a main structure that regulate the efficiency of the use of water, as well as the entry door of many pathogens that affect agriculture. Knowing the molecular level and how the complex process of stomas opening and closing is regulated can help us to design new crops resistant to pests and drought," concludes José Miguel Mulet, researcher at IBMCP.

Locascio A, Marques MC, García-Martínez G, Corratgé-Faillie C, Andrés-Colás N, Rubio L, Fernandez JA, Véry AA5, Mulet JM, Yenush LP. BCL2-ASSOCIATED ATHANOGENE4 Regulates the KAT1 Potassium Channel and Controls Stomatal Movement. Plant Physiology. DOI 10.1104/pp.19.00224

University of Malaga

Related Drought Articles:

An evapotranspiration deficit drought index to detect drought impacts on ecosystems
The difference between actual and potential evapotranspiration, technically termed a standardized evapotranspiration deficit drought index (SEDI), can more sensitively capture the biological changes of ecosystems in response to the dynamics of drought intensity, compared with indices based on precipitation and temperature.
Sesame yields stable in drought conditions
Research shows adding sesame to cotton-sorghum crop rotations is possible in west Texas
Mapping the effects of drought on vulnerable populations
The greater frequency of droughts, combined with underlying economic, social, and environmental risks means that dry spells have an increasingly destructive impact on vulnerable populations, and particularly on children in the developing world.
Asia's glaciers provide buffer against drought
A new study to assess the contribution that Asia's high mountain glaciers make to relieving water stress in the region is published this week (May 29, 2019) in the journal Nature.
How severe drought influences ozone pollution
From 2011 to 2015, California experienced its worst drought on record, with a parching combination of high temperatures and low precipitation.
A faster, more accurate way to monitor drought
A new drought monitoring method developed at Duke University allows scientists to identify the onset of drought sooner, meaning conservation or remediation measures could be put into place sooner.
How does the Amazon rain forest cope with drought?
The Amazon rain forest isn't necessarily a place that many would associate with a drought, yet prolonged dry spells are projected to become more prevalent and severe because of climate change.
Trees change inside as drought persists
James Cook University scientists in Australia have found that trees change their anatomy in response to prolonged drought.
Climate changes require better adaptation to drought
Europe's future climate will be characterised by more frequent heat waves and more widespread drought.
New research identifies two types of drought across China and how they evolve
Dr. Linying WANG and Professor Xing YUAN, from the Institute of Atmospheric Physics, Chinese Academy of Sciences, used in-situ observations and reanalysis datasets to explore the long-term variability and trends of two types of flash drought.
More Drought News and Drought Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at