Nav: Home

How time affects the fate of stem cells

September 26, 2019

How do temporal variations in protein concentrations affect biology? It's a question that biologists have only recently begun to address, and the findings are increasingly showing that random temporal changes in the amount of certain proteins play a direct and significant role on biological processes.

In a new study published in Molecular Systems Biology, researchers at the lab of David Suter at EPFL have found that temporal fluctuations in protein concentrations can determine the type of cell that embryonic stem cells will become.

The scientists studied two important transcription factors, SOX2 and OCT4 whose levels in embryonic stem cells change over time. Both of these transcription factors are important for embryonic stem cell self-renewal and differentiation (or "fate") into specific cell types.

To monitor their temporal fluctuations, the team carried out sophisticated genome engineering, generating five knock-in "reporter" genes in a single line of embryonic stem cells. These are genes that are attached near a gene of interest (in this case the genes for SOX2 and OCT4) and produce a visible signal - e.g. fluorescent light - when the target gene is expressed in a cell, thus "reporting" when it produces its corresponding protein.

Using this method, the researchers could monitor the fluctuations of SOX2 and OCT4 over time in living cells and determine how these fluctuations impact the fate of the embryonic stem cells.

The study found that small changes in the levels of either transcription factors impacts the fate of the cells, but only during the first cell-growth phase of the cell's life (the G1 phase). Increased SOX2 levels seem to "push" embryonic stem cells towards neuronal-type cells (those that come from the neuroectoderm), while elevated OCT4 levels strongly directed cells towards both neuronal and non-neuronal differentiated cell types. The reason, the scientists found, is that high OCT4 levels increase the accessibility of differentiation factors to the cell's chromatin.

"As fluctuations in transcription factor concentrations are to a large extent driven by the inherent randomness of the gene expression cascade, these could set fundamental limits in our ability to redirect cell fate decisions for therapeutic purposes," says Suter. "Further work will be required to determine whether these fluctuations could be at least partially suppressed to mitigate their impact on controlling the fate of embryonic stem cells."
-end-
Reference

Daniel Strebinger, Cédric Deluz, Elias T. Friman, Subashika Govindan, Andrea B. Alber, David M. Suter. Endogenous fluctuations of OCT4 and SOX2 bias pluripotent cell fate decisions. Molecular Systems Biology (2019)15:e9002, 25 September 2019. DOI: 10.15252/msb.20199002

Ecole Polytechnique Fédérale de Lausanne

Related Embryonic Stem Cells Articles:

New mechanisms that regulate pluripotency in embryonic stem cells are discovered
A study by researchers at the Center for Cell-Based Therapy, which is supported by FAPESP, identified microRNAs involved in pluripotency maintenance and cell differentiation.
Embryonic mammary gland stem cells identified
Research team led by Prof. Cédric Blanpain identified the mechanisms that regulate mammary gland development.
New insights into mechanisms regulating gene expression in embryonic stem cells
Researchers from Turku, Finland, have discovered new information about the mechanisms which maintain gene activity in human embryonic stem cells.
New tools to study the origin of embryonic stem cells
Researchers at Karolinska Institutet have identified cell surface markers specific for the very earliest stem cells in the human embryo.
Scientists approve the similarity between reprogrammed and embryonic stem cells
Researchers from the Vavilov Institute of General Genetics, Research Institute of Physical Chemical Medicine and Moscow Institute of Physics and Technology (MIPT) have concluded that reprogramming does not create differences between reprogrammed and embryonic stem cells.
Drug makes stem cells become 'embryonic' again
If you want to harness the full power of stem cells, all you might need is an eraser -- in the form of a drug that can erase the tiny labels that tell cells where to start reading their DNA.
Oncogene controls stem cells in early embryonic development
Many animal species delay the development of their embryos to ensure that their offspring is born at a favorable time.
Are embryonic stem cells and artificial stem cells equivalent?
Harvard Stem Cell Institute (HSCI) researchers at Massachusetts General Hospital and Harvard Medical School have found new evidence suggesting some human induced pluripotent stem cells are the 'functional equivalent' of human embryonic stem cells, a finding that may begin to settle a long running argument.
UCSF researchers control embryonic stem cells with light
UCSF researchers have for the first time developed a method to precisely control embryonic stem cell differentiation with beams of light, enabling them to be transformed into neurons in response to a precise external cue.
Protein plays unexpected role in embryonic stem cells
A protein long believed to only guard the nucleus also regulates gene expression and stem cell development.
More Embryonic Stem Cells News and Embryonic Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.