How time affects the fate of stem cells

September 26, 2019

How do temporal variations in protein concentrations affect biology? It's a question that biologists have only recently begun to address, and the findings are increasingly showing that random temporal changes in the amount of certain proteins play a direct and significant role on biological processes.

In a new study published in Molecular Systems Biology, researchers at the lab of David Suter at EPFL have found that temporal fluctuations in protein concentrations can determine the type of cell that embryonic stem cells will become.

The scientists studied two important transcription factors, SOX2 and OCT4 whose levels in embryonic stem cells change over time. Both of these transcription factors are important for embryonic stem cell self-renewal and differentiation (or "fate") into specific cell types.

To monitor their temporal fluctuations, the team carried out sophisticated genome engineering, generating five knock-in "reporter" genes in a single line of embryonic stem cells. These are genes that are attached near a gene of interest (in this case the genes for SOX2 and OCT4) and produce a visible signal - e.g. fluorescent light - when the target gene is expressed in a cell, thus "reporting" when it produces its corresponding protein.

Using this method, the researchers could monitor the fluctuations of SOX2 and OCT4 over time in living cells and determine how these fluctuations impact the fate of the embryonic stem cells.

The study found that small changes in the levels of either transcription factors impacts the fate of the cells, but only during the first cell-growth phase of the cell's life (the G1 phase). Increased SOX2 levels seem to "push" embryonic stem cells towards neuronal-type cells (those that come from the neuroectoderm), while elevated OCT4 levels strongly directed cells towards both neuronal and non-neuronal differentiated cell types. The reason, the scientists found, is that high OCT4 levels increase the accessibility of differentiation factors to the cell's chromatin.

"As fluctuations in transcription factor concentrations are to a large extent driven by the inherent randomness of the gene expression cascade, these could set fundamental limits in our ability to redirect cell fate decisions for therapeutic purposes," says Suter. "Further work will be required to determine whether these fluctuations could be at least partially suppressed to mitigate their impact on controlling the fate of embryonic stem cells."
-end-
Reference

Daniel Strebinger, Cédric Deluz, Elias T. Friman, Subashika Govindan, Andrea B. Alber, David M. Suter. Endogenous fluctuations of OCT4 and SOX2 bias pluripotent cell fate decisions. Molecular Systems Biology (2019)15:e9002, 25 September 2019. DOI: 10.15252/msb.20199002

Ecole Polytechnique Fédérale de Lausanne

Related Embryonic Stem Cells Articles from Brightsurf:

New mechanisms that regulate pluripotency in embryonic stem cells are discovered
A study by researchers at the Center for Cell-Based Therapy, which is supported by FAPESP, identified microRNAs involved in pluripotency maintenance and cell differentiation.

Embryonic mammary gland stem cells identified
Research team led by Prof. C├ędric Blanpain identified the mechanisms that regulate mammary gland development.

New insights into mechanisms regulating gene expression in embryonic stem cells
Researchers from Turku, Finland, have discovered new information about the mechanisms which maintain gene activity in human embryonic stem cells.

New tools to study the origin of embryonic stem cells
Researchers at Karolinska Institutet have identified cell surface markers specific for the very earliest stem cells in the human embryo.

Scientists approve the similarity between reprogrammed and embryonic stem cells
Researchers from the Vavilov Institute of General Genetics, Research Institute of Physical Chemical Medicine and Moscow Institute of Physics and Technology (MIPT) have concluded that reprogramming does not create differences between reprogrammed and embryonic stem cells.

Drug makes stem cells become 'embryonic' again
If you want to harness the full power of stem cells, all you might need is an eraser -- in the form of a drug that can erase the tiny labels that tell cells where to start reading their DNA.

Oncogene controls stem cells in early embryonic development
Many animal species delay the development of their embryos to ensure that their offspring is born at a favorable time.

Are embryonic stem cells and artificial stem cells equivalent?
Harvard Stem Cell Institute (HSCI) researchers at Massachusetts General Hospital and Harvard Medical School have found new evidence suggesting some human induced pluripotent stem cells are the 'functional equivalent' of human embryonic stem cells, a finding that may begin to settle a long running argument.

UCSF researchers control embryonic stem cells with light
UCSF researchers have for the first time developed a method to precisely control embryonic stem cell differentiation with beams of light, enabling them to be transformed into neurons in response to a precise external cue.

Protein plays unexpected role in embryonic stem cells
A protein long believed to only guard the nucleus also regulates gene expression and stem cell development.

Read More: Embryonic Stem Cells News and Embryonic Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.