Farmed oysters able to protect themselves from acidification

September 26, 2019

Oysters bred for fast growth and disease resistance are able to adapt their shell growth to protect themselves from environmental acidification, according to new research.

Ocean and coastal acidification - the ongoing increase in the acidity of the world's oceans - hampers some organisms, such as oysters, from producing and maintaining their shells. However, experts now believe that for oysters there is a potential solution to the problem.

A team led by Dr Susan Fitzer, a Research Fellow at the University of Stirling's Institute of Aquaculture (IoA), studied Sydney Rock Oysters in New South Wales, Australia, and found that resilient strains of this oyster - generated through targeted breeding - can cope better with more acidic seawater conditions.

Dr Fitzer said: "Our work addresses a major problem in oyster aquaculture. Coastal acidification in Australia, and in many other regions around the globe, is damaging oysters' ability to grow properly - with such changes in shell growth mechanisms likely to have implications in the future. For example, we may see the production of smaller oysters with thinner shells - leaving them prone to fracture and at risk of shell damage during culture and harvesting.

"Our research shows, for the first time, that oysters selectively bred for fast growth and disease resistance can alter their mechanisms of shell biomineralisation, promoting resilience to acidification."

Commercial shellfish aquaculture is vulnerable to the impacts of ocean acidification - caused by increasing carbon dioxide absorption by the ocean - and coastal acidification, driven by land runoff and rising sea levels.

Working with New South Wales Department of Primary Industries, the University of Sydney and the Scottish Universities Environment Research Centre, the team characterised the crystallography and carbon uptake in the shells of the Sydney Rock Oyster (Saccostrea glomerata) farmed in habitats affected by acidification from land runoff. The scientists looked at oysters from families selectively bred for fast growth or disease resistance to assess whether these factors were associated with changes in the mechanisms of shell biomineralisation, in comparison to wild oysters.

Dr Fitzer said: "Importantly, our research was able to show that selective breeding in oysters is likely to be an important global mitigation strategy for sustainable shellfish aquaculture to withstand future climate-driven change to habitat acidification."
-end-
The Natural Environment Research Council supported Dr Fitzer's work through an Independent Research Fellowship, while Professor Maria Byrne (University of Sydney) participated in the study with the backing of the New South Wales Environment Trust.

The paper, Selectively bred oysters can alter their biomineralisation pathways, promoting resilience to environmental acidification, is published in the journal Global Change Biology. It follows a previous paper in August 2018 and a Conversation article by Dr Fitzer in January 2019.

University of Stirling

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.