Nav: Home

Stanford scientists find potential diagnostic tool, treatment for Parkinson's disease

September 26, 2019

Investigators at the Stanford University School of Medicine have pinpointed a molecular defect that seems almost universal among patients with Parkinson's disease and those at a high risk of acquiring it.

The discovery could provide a way of detecting the neurodegenerative disorder in its earliest stages, before symptoms start to manifest. And it points to the possibility of halting the disease's progression. The defect appears to be exclusive to individuals with Parkinson's disease.

"We've identified a molecular marker that could allow doctors to diagnose Parkinson's accurately, early and in a clinically practical way," said Xinnan Wang, MD, PhD, associate professor of neurosurgery. "This marker could be used to assess drug candidates' capacity to counter the defect and stall the disease's progression."

The scientists also identified a compound that appears to reverse the defect in cells taken from Parkinson's patients. In animal models of the disease, the compound prevented the death of the neurons whose loss underlies the disease.

These steps are described in a study to be published online Sept. 26 in Cell Metabolism. Wang is the study's senior author. Postdoctoral scholars Chung-Han Hsieh, PhD, and Li Li, MD, PhD, share lead authorship.

Common neurodegenerative disease

Parkinson's, the second most common neurodegenerative disease, affects 35 million people worldwide. Whereas 5%-10% of cases are familial -- the inherited result of known genetic mutations -- the vast majority are sporadic, involving complex interactions of multiple unknown genes and environmental factors.

So it's encouraging, Wang said, that both the diagnostic marker and the treatment worked in cells from Parkinson's patients with either familial or sporadic versions of the condition.

An age-related progressive movement disorder, the disease stems from the mysterious die-off of a set of nerve cells, or neurons, in the brain that fine-tunes bodily movement. These neurons, which originate in a midbrain structure, the substantia nigra, are referred to as dopaminergic because they secrete a substance, dopamine, to transmit motion-modulating signals to other neurons. By the time a person starts manifesting symptoms of the disease, an estimated 50% of the substantia nigra's dopaminergic neurons have already died.

What makes these particular neurons die is unknown. A leading theory holds that the special intensity with which they perform their duties frazzles their mitochondria. These bacteria-sized cellular components generate energy for cells in exchange for a steady supply of raw materials: oxygen and carbon-rich carbohydrates or fats.

This process, known as respiration, has a downside: It inevitably generates toxic byproducts called free radicals, which not only can cause cellular damage but are extremely harmful to the mitochondria themselves.

Parkinson's is known to involve a defect in mitochondrial function. The harder a cell has to work, the more energy its mitochondria have to churn out -- and the more likely they'll burn out. Dopaminergic neurons in the substantia nigra are among the body's hardest-working cells.

Mitochondria spend much of their time attached to a grid of protein "roads" that crisscross cells. Like old cars that can no longer pass a smog test because they can't stop spewing noxious exhaust fumes, defective mitochondria have to be taken off the road. Our cells have a technique for clearing mitochondrial clunkers: a series of proteins that shuffle them off to the cell's recycling centers. But first, those proteins have to remove an adaptor molecule called Miro that attaches mitochondria, damaged or healthy, to the grid.

Wang's group previously identified a mitochondrial-clearance defect in Parkinson's patients' cells: Their inability to remove Miro from damaged mitochondria.

In the new study, Wang's team obtained skin samples from 83 Parkinson's patients, five asymptomatic close relatives considered to be at heightened risk, 22 patients diagnosed with other movement disorders and 52 healthy control subjects. They extracted fibroblasts -- cells that are common in skin tissue -- from the samples, cultured them in petri dishes and subjected them to a stressful process that messes up mitochondria. This should result in their clearance, necessarily preceded by removal of Miro molecules tethering them to the grid.

Yet the researchers found the Miro-removal defect in 78 of the 83 Parkinson's fibroblasts (94%) and in all 5 of the "high-risk" samples, but not in fibroblasts from the control group or other or from patients with other movement-disorders.

Screening small molecules

Next, the investigators screened 6,835,320 small molecules, whose structures reside in a commercially available database, in collaboration with Atomwise Inc. The biotechnology company's software predicted that 11 of these molecules would bind to Miro in a way that would facilitate its separation from mitochondria and would, in addition, be nontoxic, orally available and able to cross the blood-brain barrier, the study reports.

After feeding these compounds to fruit flies for seven days, the researchers determined that four of them significantly reduced the flies' Miro levels without toxicity. They tested one compound, which appeared to target Miro most exclusively, on fibroblasts from a patient with sporadic Parkinson's disease. It substantially improved Miro clearance in these cells after their exposure to mitochondria-damaging stress.

The scientists also fed the compound to three different fruit-fly strains bioengineered to develop Parkinson's-like climbing difficulty. Administering the compound to those flies throughout their 90-day life spans produced no evident toxicity and prevented dopaminergic neurons' death in all three strains and, in two, preserved their climbing ability.

Wang said she believes clinical trials of the compound or a close analog are no more than a few years off.

"Our hope," she said, "is that if this compound or a similar one proves nontoxic and efficacious and we can give it, like a statin drug, to people who've tested positive for the Miro-removal defect but don't yet have Parkinson's symptoms, they'll never get it."

Stanford's Office of Licensing Technology has filed a provisional patent for the use of the study's lead compound in Parkinson's disease and other neurodegenerative disorders. Wang has formed a company, CuraX, with the goal of speeding its development.
-end-
Wang is a member of Stanford Bio-X and of the Wu Tsai Neurosciences Institute at Stanford.

Researchers at Atomwise and at the Mayo Clinic in Jacksonville, Florida, also contributed to the work.

The study was funded by the National Institutes of Health (grant RO1NS089583), the Klingenstein Fund, the California Institute for Regenerative Medicine, the Archer Fund, Stanford SPARK and a Stanford Parkinson's Disease Seed Grant from the departments of Neurosurgery and of Pathology.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://med.stanford.edu/school.html. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Stanford Children's Health. For information about all three, please visit http://med.stanford.edu.

Print media contact: Bruce Goldman at (650) 725-2106 (goldmanb@stanford.edu)

Broadcast media contact: Margarita Gallardo at (650) 723-7897 (mjgallardo@stanford.edu)

Stanford Medicine

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.