Nav: Home

How a protein connecting calcium and plant hormone regulates plant growth

September 26, 2019

Plant growth is strongly shaped by environmental conditions like light, humidity, drought and salinity, among other factors. But how plants integrate environmental signals and the developmental processes encoded in their genes remains a mystery.

A new Tel Aviv University study finds that a unique mechanism involving calcium, the plant hormone auxin and a calcium-binding protein is responsible for regulating plant growth. Researchers say that a protein that binds to calcium regulates both auxin responses and calcium levels, creating an interface that determines how plants grow.

The study was led by Prof. Shaul Yalovsky of TAU's George S. Wise Faculty of Life Sciences and published in PLOS Biology on July 11. Research for the study was conducted by TAU graduate students Ora Hazak and Elad Mamon and colleagues. It is the fruit of a collaboration with Prof. Joel Hirsch of TAU's Department of Biochemistry and Molecular Biology, Prof. Jörg Kudla of the University of Münster and Prof. Mark Estelle of the University of California, San Diego.

"Determining the mechanisms that underlie the developmental plasticity of plants is essential for agricultural innovation," Prof. Yalovsky explains. "It was believed for several decades that calcium and auxin interfaced during a plant's development, but the exact mechanisms underlying this 'cross-talk' were unclear.

"We have discovered that auxin communicates with calcium through a binding protein called CMI1. We believe our research will have long-term applications for farmers and agricultural experts, who will be able to harness this information to adapt future generations of plants to extreme environmental conditions such as high temperatures, drought and high salinity in the soil."

The levels of the plant hormone auxin determine where leaves develop on a plant, how many branches a plant has and how roots develop. Calcium levels change in plants in response to environmental signals like high or low temperatures, touch and soil salinity, as well as in response to auxin levels.

"Prior to our research, it was unclear how the interaction between calcium and auxin took place," adds Prof. Yalovsky. "Now we know that when auxin levels are high, the levels of the newly discovered binding protein CMI1 are high. We discovered that this protein regulates auxin responses and calcium levels and that it binds to calcium."

Plant responses to auxin are either slow or rapid. Slow responses take place over the course of hours and days and depend on gene expression pathways, whereas rapid responses take place within minutes. The characteristics of CMI1 enable rapid responses to auxin levels, which depend on the presence of calcium.

"We used a very wide collection of tools and approaches that allowed us to carry out our analyses starting from the level of the whole plant, down through the level of tissue and cells, and finally to the level of molecules," Prof. Yalovsky concludes. "The next step will be to identify the cellular components that interact with the protein that we discovered."
-end-
American Friends of Tel Aviv University supports Israel's most influential, comprehensive and sought-after center of higher learning, Tel Aviv University (TAU). TAU is recognized and celebrated internationally for creating an innovative, entrepreneurial culture on campus that generates inventions, startups and economic development in Israel. TAU is ranked ninth in the world, and first in Israel, for producing start-up founders of billion-dollar companies, an achievement that surpassed several Ivy League universities. To date, 2,500 US patents have been filed by Tel Aviv University researchers -- ranking TAU #1 in Israel, #10 outside of the US and #66 in the world.

American Friends of Tel Aviv University

Related Protein Articles:

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.
A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.
A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.
Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.
Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.
Protein injections in medicine
One day, medical compounds could be introduced into cells with the help of bacterial toxins.
Discovery of an unusual protein
Scientists from Bremen discover an unusual protein playing a significant role in the Earth's nitrogen cycle.
Protein aggregation: Protein assemblies relevant not only for neurodegenerative disease
Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains - an important model system for research.
Old protein, new tricks: UMD connects a protein to antibody immunity for the first time
How can a protein be a major contributor in the development of birth defects, and also hold the potential to provide symptom relief from autoimmune diseases like lupus?
Infection-fighting protein also senses protein misfolding in non-infected cells
Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.
More Protein News and Protein Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.