Compute at the speed of light

September 26, 2019

The signals from a lighthouse to ships at sea is an early example of optical communication, the use of light to transmit information. Today, researchers in the field of integrated photonics are using optical communications principles to build high-tech devices, like lightning-fast computers, which utilize light instead of electricity.

At the University of Delaware, a research team led by Tingyi Gu, assistant professor of electrical and computer engineering, has designed an integrated photonics platform with a one-dimensional metalens -- a thin lens that can be designed at the nanoscale to focus light in a specific way -- and metasurfaces -- tiny surfaces made with nanostructures to manipulate the transmitted or reflected light-- that limit the loss of information. The team recently described their device in the journal Nature Communications.

"It's a new way to achieve integrated photonics compared to the conventional way," said doctoral student Zi Wang, the first author of the paper.

The team fabricated a tiny metalens on a silicon-based chip programmed with hundreds of tiny air slots, enabling parallel optical signal processing all within the tiny chip. They demonstrated high signal transmission with less than one decibel loss over a 200-nanometer bandwidth. When they layered three of their metasurfaces together, they demonstrated functionalities of Fourier transformation and differentiation -- important techniques in the physical sciences that break down functions into constituent parts.

"This is the first paper to use low-loss metasurfaces on the integrated photonics platform," said Gu. "Our structure is broadband and low loss, which is critical for energy efficient optical communications."

What's more, the new device developed at UD is much smaller and lighter than conventional devices of its type. It doesn't require the manual alignment of lenses, so it is more robust and scalable compared to the traditional free-space optics platforms, which require tremendous patience and time to set up.

This new device could have applications in imaging, sensing and quantum information processing, such as on-chip transformation optics, mathematical operations and spectrometers. With more development, this technology could also be useful in deep learning and neural network applications in computing.

"It's just much faster than conventional structures," said Gu. "There are still a lot of technical challenges when you try to actively control them, but this is a new platform we are starting with and working on."

Parts of the device were fabricated in the University of Delaware Nanofabrication Facility and at AIM Photonics in Rochester, New York.

While working on this project, Gu was inspired by conversations with fellow faculty members Dennis Prather, Engineering Alumni Professor of Electrical and Computer Engineering; Gonzalo Arce, Charles Black Evans Professor of Electrical and Computer Engineering; and Kenneth Barner, Charles Black Evans Professor of Electrical and Computer Engineering.

University of Delaware

Related Computer Engineering Articles from Brightsurf:

UCLA computer scientists set benchmarks to optimize quantum computer performance
Two UCLA computer scientists have shown that existing compilers, which tell quantum computers how to use their circuits to execute quantum programs, inhibit the computers' ability to achieve optimal performance.

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Achievement isn't why more men are majoring in physics, engineering and computer science
Researchers at New York University's Steinhardt School found that the reason there are more undergraduate men than women majoring in physics, engineering and computer science is not because men are higher achievers.

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Advances in computer modeling, protein development propel cellular engineering
A review of recent work in biophysics highlights efforts in cellular engineering, ranging from proteins to cellular components to tissues grown on next-generation chips.

Computer-based weather forecast: New algorithm outperforms mainframe computer systems
The exponential growth in computer processing power seen over the past 60 years may soon come to a halt.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

Read More: Computer Engineering News and Computer Engineering Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to