Nav: Home

Artificial intelligence predicts radiation tx side effects for pts with head & neck cancers

September 26, 2019

For the first time, a sophisticated computer model has been shown to accurately predict two of the most challenging side effects associated with radiation therapy for head and neck cancer. This precision oncology approach has the potential to better identify patients who might benefit from early interventions that may help to prevent significant weight loss after treatment or reduce the need for feeding tube placement. Findings were presented at the 61st Annual Meeting of the American Society for Radiation Oncology (ASTRO).

"In the past, it has been hard to predict which patients might experience these side effects," said Jay Reddy, MD, PhD, an assistant professor of radiation oncology at The University of Texas MD Anderson Cancer Center and lead author on the study. "Now we have a reliable machine learning model, using a high volume of internal institutional data, that allows us to do so."

Machine learning is a branch of artificial intelligence that uses statistical models to analyze large quantities of data, uncovering patterns that can predict outcomes with a high degree of accuracy. Used by the tech industry to allow speech and facial recognition, "spam" filtering and targeted advertising, machine learning has been an emerging topic of interest for medical researchers seeking to translate large amounts of data into knowledge that can support clinical decision making.

Dr. Reddy and his team developed models to analyze large sets of data merged from three sources: electronic health records (Epic), an internal web-based charting tool (Brocade) and the record/verify system (Mosaiq). The data included more than 700 clinical and treatment variables for patients with head and neck cancer (75% male/25% female, with a median age of 62 years) who received more than 2,000 courses of radiation therapy (median dose 60 Gy) across five practice sites at MD Anderson from 2016 to 2018.

Researchers used the models to predict three endpoints: significant weight loss, feeding tube placement and unplanned hospitalizations. Results from the best-performing model were then validated against 225 subsequent consecutive radiation therapy treatments. Models with a performance rate that met a pre-specified threshold of area under the curve (AUC) of 0.70 or higher were considered clinically valid. (An AUC score of 1.0 would mean the model's predictions were 100% accurate, while a score of 0.0 would mean the predictions were never accurate.)

Approximately 53,000 people are diagnosed with head and neck (oral cavity or oropharyngeal) cancers each year in the United States. These cancers are more than twice as common in men as in women, and typically diagnosed later in life (with an average age of diagnosis of 62 years). Head and neck cancers, when diagnosed early, are typically treated with radiation therapy or surgery. Later-stage cancers are treated with a combination of radiation therapy and chemotherapy. A patient may also be treated first with surgery, followed by radiation therapy alone or by a combination of radiation and chemotherapy.

Radiation therapy is effective at treating head and neck cancer by slowing or stopping the growth of new cancer cells. However, it may also damage oral tissue and upset the balance of bacteria in the mouth, causing adverse side effects such as a sore throat, mouth sores, loss of taste and dry mouth. When sore throats are severe, they can make it difficult for the patient to eat and may lead to weight loss or require the temporary insertion of a feeding tube. Nearly all patients with head and neck cancer experience some negative effects of treatment.

"Being able to identify which patients are at greatest risk would allow radiation oncologists to take steps to prevent or mitigate these possible side effects," said Dr. Reddy. "If the patient has an intermediate risk, and they might get through treatment without needing a feeding tube, we could take precautions such as setting them up with a nutritionist and providing them with nutritional supplements. If we know their risk for feeding tube placement is extremely high - a better than 50% chance they would need one - we could place it ahead of time so they wouldn't have to be admitted to the hospital after treatment. We'd know to keep a closer eye on that patient."

The models predicted the likelihood of significant weight loss (AUC = 0.751) and need for feeding tube placement (AUC = 0.755) with a high degree of accuracy.

"The models used in this study were consistently good at predicting those two outcomes," said Dr. Reddy. "You could rerun those models with a new patient or series of patients and get a number saying this adverse effect is likely to happen or not to happen."

For example, said Dr. Reddy, using their model, clinicians could potentially plug in information related to a specific patient - such as age, gender, type of cancer and other distinct variables - and the model might tell them, "Eighty percent of people like you with this clinical profile get through treatment without a feeding tube. It may not be perfect, but it's better than having no understanding at all."

The model fell short of predicting unplanned hospitalizations with sufficient clinical validity (AUC = 0.64). Redoing the analyses with more "training" data for unplanned hospitalizations could improve accuracy in predicting this side effect as well, said Dr. Reddy. "As we treat more and more patients, the sample size gets bigger, so every data point should get better. It's possible we just didn't have enough information accumulated for this aspect of the model."

While the machine learning approach can't isolate the single-most predictive factor or combination of factors that lead to negative side effects, it can provide patients and their clinicians with a better understanding of what to expect during the course of treatment, said Dr. Reddy. In addition to predicting the likelihood of side effects, machine learning models could potentially predict which treatment plans would be most effective for different types of patients and allow for more personalized approaches to radiation oncology, he explained.

"Machine learning can make doctors more efficient and treatment safer by reducing the risk of error," said Dr. Reddy. "It has the potential for influencing all aspects of radiation oncology today - anything where a computer can look at data and recognize a pattern."
The abstract, "Applying a machine learning approach to predict acute radiation toxicities for head and neck cancer patients," was presented in detail at ASTRO's 61st Annual Meeting in Chicago. Audio and slides from the news briefing are available at To schedule an interview with Dr. Reddy and/or outside experts, contact ASTRO's media relations team at


The American Society for Radiation Oncology (ASTRO) is the world's largest radiation oncology society , with more than 10,000 members who are physicians, nurses, biologists, physicists, radiation therapists, dosimetrists and other health care professionals who specialize in treating patients with radiation therapies. The Society is dedicated to improving patient care through professional education and training, support for clinical practice and health policy standards, advancement of science and research, and advocacy. ASTRO publishes three medical journals, International Journal of Radiation Oncology * Biology * Physics, Practical Radiation Oncology and Advances in Radiation Oncology; developed and maintains an extensive patient website, RT Answers; and created the nonprofit foundation Radiation Oncology Institute. To learn more about ASTRO, visit

American Society for Radiation Oncology

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
More Cancer News and Cancer Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab