Nav: Home

Artificial intelligence predicts radiation tx side effects for pts with head & neck cancers

September 26, 2019

For the first time, a sophisticated computer model has been shown to accurately predict two of the most challenging side effects associated with radiation therapy for head and neck cancer. This precision oncology approach has the potential to better identify patients who might benefit from early interventions that may help to prevent significant weight loss after treatment or reduce the need for feeding tube placement. Findings were presented at the 61st Annual Meeting of the American Society for Radiation Oncology (ASTRO).

"In the past, it has been hard to predict which patients might experience these side effects," said Jay Reddy, MD, PhD, an assistant professor of radiation oncology at The University of Texas MD Anderson Cancer Center and lead author on the study. "Now we have a reliable machine learning model, using a high volume of internal institutional data, that allows us to do so."

Machine learning is a branch of artificial intelligence that uses statistical models to analyze large quantities of data, uncovering patterns that can predict outcomes with a high degree of accuracy. Used by the tech industry to allow speech and facial recognition, "spam" filtering and targeted advertising, machine learning has been an emerging topic of interest for medical researchers seeking to translate large amounts of data into knowledge that can support clinical decision making.

Dr. Reddy and his team developed models to analyze large sets of data merged from three sources: electronic health records (Epic), an internal web-based charting tool (Brocade) and the record/verify system (Mosaiq). The data included more than 700 clinical and treatment variables for patients with head and neck cancer (75% male/25% female, with a median age of 62 years) who received more than 2,000 courses of radiation therapy (median dose 60 Gy) across five practice sites at MD Anderson from 2016 to 2018.

Researchers used the models to predict three endpoints: significant weight loss, feeding tube placement and unplanned hospitalizations. Results from the best-performing model were then validated against 225 subsequent consecutive radiation therapy treatments. Models with a performance rate that met a pre-specified threshold of area under the curve (AUC) of 0.70 or higher were considered clinically valid. (An AUC score of 1.0 would mean the model's predictions were 100% accurate, while a score of 0.0 would mean the predictions were never accurate.)

Approximately 53,000 people are diagnosed with head and neck (oral cavity or oropharyngeal) cancers each year in the United States. These cancers are more than twice as common in men as in women, and typically diagnosed later in life (with an average age of diagnosis of 62 years). Head and neck cancers, when diagnosed early, are typically treated with radiation therapy or surgery. Later-stage cancers are treated with a combination of radiation therapy and chemotherapy. A patient may also be treated first with surgery, followed by radiation therapy alone or by a combination of radiation and chemotherapy.

Radiation therapy is effective at treating head and neck cancer by slowing or stopping the growth of new cancer cells. However, it may also damage oral tissue and upset the balance of bacteria in the mouth, causing adverse side effects such as a sore throat, mouth sores, loss of taste and dry mouth. When sore throats are severe, they can make it difficult for the patient to eat and may lead to weight loss or require the temporary insertion of a feeding tube. Nearly all patients with head and neck cancer experience some negative effects of treatment.

"Being able to identify which patients are at greatest risk would allow radiation oncologists to take steps to prevent or mitigate these possible side effects," said Dr. Reddy. "If the patient has an intermediate risk, and they might get through treatment without needing a feeding tube, we could take precautions such as setting them up with a nutritionist and providing them with nutritional supplements. If we know their risk for feeding tube placement is extremely high - a better than 50% chance they would need one - we could place it ahead of time so they wouldn't have to be admitted to the hospital after treatment. We'd know to keep a closer eye on that patient."

The models predicted the likelihood of significant weight loss (AUC = 0.751) and need for feeding tube placement (AUC = 0.755) with a high degree of accuracy.

"The models used in this study were consistently good at predicting those two outcomes," said Dr. Reddy. "You could rerun those models with a new patient or series of patients and get a number saying this adverse effect is likely to happen or not to happen."

For example, said Dr. Reddy, using their model, clinicians could potentially plug in information related to a specific patient - such as age, gender, type of cancer and other distinct variables - and the model might tell them, "Eighty percent of people like you with this clinical profile get through treatment without a feeding tube. It may not be perfect, but it's better than having no understanding at all."

The model fell short of predicting unplanned hospitalizations with sufficient clinical validity (AUC = 0.64). Redoing the analyses with more "training" data for unplanned hospitalizations could improve accuracy in predicting this side effect as well, said Dr. Reddy. "As we treat more and more patients, the sample size gets bigger, so every data point should get better. It's possible we just didn't have enough information accumulated for this aspect of the model."

While the machine learning approach can't isolate the single-most predictive factor or combination of factors that lead to negative side effects, it can provide patients and their clinicians with a better understanding of what to expect during the course of treatment, said Dr. Reddy. In addition to predicting the likelihood of side effects, machine learning models could potentially predict which treatment plans would be most effective for different types of patients and allow for more personalized approaches to radiation oncology, he explained.

"Machine learning can make doctors more efficient and treatment safer by reducing the risk of error," said Dr. Reddy. "It has the potential for influencing all aspects of radiation oncology today - anything where a computer can look at data and recognize a pattern."
-end-
The abstract, "Applying a machine learning approach to predict acute radiation toxicities for head and neck cancer patients," was presented in detail at ASTRO's 61st Annual Meeting in Chicago. Audio and slides from the news briefing are available at http://www.astro.org/ASTRO19press. To schedule an interview with Dr. Reddy and/or outside experts, contact ASTRO's media relations team at press@astro.org.

ABOUT ASTRO

The American Society for Radiation Oncology (ASTRO) is the world's largest radiation oncology society , with more than 10,000 members who are physicians, nurses, biologists, physicists, radiation therapists, dosimetrists and other health care professionals who specialize in treating patients with radiation therapies. The Society is dedicated to improving patient care through professional education and training, support for clinical practice and health policy standards, advancement of science and research, and advocacy. ASTRO publishes three medical journals, International Journal of Radiation Oncology * Biology * Physics, Practical Radiation Oncology and Advances in Radiation Oncology; developed and maintains an extensive patient website, RT Answers; and created the nonprofit foundation Radiation Oncology Institute. To learn more about ASTRO, visit http://www.astro.org.

American Society for Radiation Oncology

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.