How neuronal recognition of songbird calls unfolds over time

September 26, 2019

A novel computational approach sheds new light on the response of neurons in the brain of a songbird when it hears and interprets the meaning of another bird's call. Julie Elie and Frédéric Theunissen of University of California, Berkeley, present the new method and findings in PLOS Computational Biology.

Songbirds use distinct vocal calls to convey different types of information, such as communicating hunger or warning about a nearby predator. Using a large database of zebra finch sounds, Elie and Theunissen previously showed that when one bird hears another's calls, neurons in the auditory region of its brain respond differently to different calls, depending on the different meanings of those calls.

Now, the researchers have investigated how that process of neuronal recognition of different call meanings unfolds over time. Using a mathematical framework known as information theory, they developed a novel method for studying the response of sensory systems to stimuli that must be classified into different categories. They applied it to analyze recordings taken of neuronal activity in finches while they listened to others' calls.

The analysis showed that, for a given recording of a single neuron's activity in response to a call, the initial response contains some information about the call's meaning, but additional information continues to accumulate for up to 600 milliseconds. The onset phase and the sustained response phase capture a similar amount of information about the meaning of the call. The researchers also identified individual neurons that may play a bigger role than others in categorizing the meaning of a given call.

"We found a new method to calculate how information about a behaviorally meaningful category of sounds unfolds in time while an individual is processing communication signals, performing the necessary transformations from sound to meaning," Elie says.

She and Theunissen plan to continue using experimental and computational methods to explore how songbirds' brains process the meanings of different calls. Meanwhile, the novel information theory approach they developed could be applied to other sensory and motor systems in other species to better understand how information processing unfolds over time at the neuronal level.
-end-
Peer-reviewed / Simulation/modeling / N/A

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006698

Citation: Elie JE, Theunissen FE (2019) Invariant neural responses for sensory categories revealed by the time-varying information for communication calls. PLoS Comput Biol 15(9): e1006698. https://doi.org/10.1371/journal.pcbi.1006698

Funding: This study was funded by a National Institutes of Health grant to FET (NIDCD R01 0167783). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.