Nav: Home

How neuronal recognition of songbird calls unfolds over time

September 26, 2019

A novel computational approach sheds new light on the response of neurons in the brain of a songbird when it hears and interprets the meaning of another bird's call. Julie Elie and Frédéric Theunissen of University of California, Berkeley, present the new method and findings in PLOS Computational Biology.

Songbirds use distinct vocal calls to convey different types of information, such as communicating hunger or warning about a nearby predator. Using a large database of zebra finch sounds, Elie and Theunissen previously showed that when one bird hears another's calls, neurons in the auditory region of its brain respond differently to different calls, depending on the different meanings of those calls.

Now, the researchers have investigated how that process of neuronal recognition of different call meanings unfolds over time. Using a mathematical framework known as information theory, they developed a novel method for studying the response of sensory systems to stimuli that must be classified into different categories. They applied it to analyze recordings taken of neuronal activity in finches while they listened to others' calls.

The analysis showed that, for a given recording of a single neuron's activity in response to a call, the initial response contains some information about the call's meaning, but additional information continues to accumulate for up to 600 milliseconds. The onset phase and the sustained response phase capture a similar amount of information about the meaning of the call. The researchers also identified individual neurons that may play a bigger role than others in categorizing the meaning of a given call.

"We found a new method to calculate how information about a behaviorally meaningful category of sounds unfolds in time while an individual is processing communication signals, performing the necessary transformations from sound to meaning," Elie says.

She and Theunissen plan to continue using experimental and computational methods to explore how songbirds' brains process the meanings of different calls. Meanwhile, the novel information theory approach they developed could be applied to other sensory and motor systems in other species to better understand how information processing unfolds over time at the neuronal level.
-end-
Peer-reviewed / Simulation/modeling / N/A

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006698

Citation: Elie JE, Theunissen FE (2019) Invariant neural responses for sensory categories revealed by the time-varying information for communication calls. PLoS Comput Biol 15(9): e1006698. https://doi.org/10.1371/journal.pcbi.1006698

Funding: This study was funded by a National Institutes of Health grant to FET (NIDCD R01 0167783). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.