Nav: Home

Human kidney map charts our growing immune defense

September 26, 2019

The first cell atlas of the human kidney's immune system has been created after scientists mapped nearly 70,000 individual kidney cells from early life and adults. Researchers at the Wellcome Sanger Institute, University of Cambridge, Newcastle University and their collaborators have generated the atlas and used it to map the communities of immune cells in the kidney. This shows for the first time how the immune system in our kidneys develops during early life in the womb, and strengthens after birth and as we mature into adults.

The results, published in Science, open the door to understanding how the kidney immune system works with important implications for tackling many types of kidney disease and transplant rejection.

The kidneys are two bean-shaped organs located below the rib cage that have an important role of filtering our blood. A pair of kidneys filter about half a cup of blood ever minute, removing waste and extra water which leaves the body as urine. They are critical in maintaining a healthy balance of water, salts and minerals in our blood, which enables our nerves, muscles and other tissues in the rest of the body to work properly*.

When the kidneys are damaged and can't filter blood properly, they gradually lose function over time and patients develop chronic kidney disease. Chronic kidney disease affects more than 850 million people worldwide and is commonly caused by diabetes, high blood pressure and recurrent infection**. Unfortunately, chronic kidney disease can progress to kidney failure, which without dialysis or a kidney transplant, is fatal. The immune system plays a critical role in responding to kidney tissue damage, but very little is known about how this works in human kidneys.

To understand the immune system in the kidneys, what happens when tissue damage or infections occur, how this can lead to chronic kidney disease, and why kidney transplants are rejected, researchers created the first map of the kidney immune system.

The team were able to chart which types of immune cells were present in particular zones of the kidney at different stages of life - from early life in the womb to adult life.

Professor Menna Clatworthy, co-lead author from the University of Cambridge Department of Medicine and Wellcome Sanger Institute, said: "The kidney cell atlas allows us to chart where different types of immune cells are located in different zones of the kidney. We highlighted a strong defence zone at the base of the kidney, near where urine leaves the kidney via the ureter, which fights against urinary tract infections. Understanding how different cell types in a healthy kidney protects us against disease is important for tackling the development of chronic kidney disease and identifying new treatments."

To create the kidney cell atlas during different development phases, researchers studied developmental§, child and adult kidney tissue. The team sequenced the activity of genes in 67,471 individual cells, using single-cell RNA sequencing, to pinpoint the types of immune cells present.

Scientists then mapped those cells over developmental time from early life to adult stage, and within the anatomical space of the kidney to understand how the kidney's immune system develops and is organised.

Researchers discovered that the very earliest cells that populate the developing kidney are macrophages - large white blood cells that eat bad bacteria and viruses - which remain in the kidney as we grow older. There were few active immune cells in the developing kidney, which aligns with the view that a developing baby is relatively sterile and only encounters bacteria during and after birth, prompting the immune system to develop as we grow.

Professor Muzlifah Haniffa, co-lead author from the Wellcome Sanger Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, said: "We have created the first map showing how the immune system in the kidney develops in early life and how that changes as we mature into adults. We uncovered the very earliest cell types in the developing kidney - these macrophages that live in the kidney throughout life are important for protecting us against infection."

Dr Sam Behjati, co-lead author from the Wellcome Sanger Institute and University of Cambridge, said: "The kidney cell atlas provides a window to understand what happens in diseases in children, including childhood kidney cancers. The atlas will allow researchers to ask fundamental questions about disease, like why some patients respond to treatment and others do not."

Dr Sarah Teichmann, co-lead author from the Wellcome Sanger Institute and University of Cambridge, and co-chair of the Human Cell Atlas initiative, said: "Mapping the human kidney brings us one step closer to producing the Human Cell Atlas - a Google map of the 37 trillion cells in the human body. We will discover new cell types and uncover how our cells change over time, learn how and why we age and what happens when we get a disease. The Human Cell Atlas will be a free online resource, for anyone to use."
-end-
Notes to Editors:

Data from this research is publically available on http://www.kidneycellatlas.org to enable further discoveries into kidney anatomy, development and function.

*https://www.niddk.nih.gov/health-information/kidney-disease/kidneys-how-they-work

**https://www.niddk.nih.gov/health-information/kidney-disease/targetText=Chronic%20kidney%20disease%20(CKD)%20means,family%20history%20of%20kidney%20failure.

*** https://www.webmd.com/kidney-stones/news/20180705/850-million-people-worldwide-have-kidney-disease

§ The developmental tissues were provided by the Wellcome- and MRC- funded Human Developmental Biological Resource.

Selected websites:

About the University of Cambridge

The mission of the University of Cambridge is to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence. To date, 107 affiliates of the University have won the Nobel Prize.

Founded in 1209, the University comprises 31 autonomous Colleges, which admit undergraduates and provide small-group tuition, and 150 departments, faculties and institutions. Cambridge is a global university. Its 19,000 student body includes 3,700 international students from 120 countries. Cambridge researchers collaborate with colleagues worldwide, and the University has established larger-scale partnerships in Asia, Africa and America.

The University sits at the heart of the 'Cambridge cluster', which employs 60,000 people and has in excess of £12 billion in turnover generated annually by the 4,700 knowledge-intensive firms in and around the city. The city publishes 341 patents per 100,000 residents. http://www.cam.ac.uk

University of Newcastle

Key facts about the University of Newcastle are available at https://www.ncl.ac.uk/press/about/keyfacts/

The Wellcome Sanger Institute

The Wellcome Sanger Institute is a world leading genomics research centre. We undertake large-scale research that forms the foundations of knowledge in biology and medicine. We are open and collaborative; our data, results, tools and technologies are shared across the globe to advance science. Our ambition is vast - we take on projects that are not possible anywhere else. We use the power of genome sequencing to understand and harness the information in DNA. Funded by Wellcome, we have the freedom and support to push the boundaries of genomics. Our findings are used to improve health and to understand life on Earth. Find out more at http://www.sanger.ac.uk or follow us on Twitter, Facebook, LinkedIn and on our Blog.

About Wellcome

Wellcome exists to improve health by helping great ideas to thrive. We support researchers, we take on big health challenges, we campaign for better science, and we help everyone get involved with science and health research. We are a politically and financially independent foundation.

Wellcome Trust Sanger Institute

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.