Nav: Home

Inflammation amps up neurite growth, gene expression involved in heat, cold sensitivity

September 26, 2019

Researchers from North Carolina State University have found that inflammation increases neuronal activity, gene expression and sensory nerve (neurite) outgrowth in neurons involved in thermal - but not physical- sensations in mice. The work sheds light on the role that inflammation-induced overexpression of calcium channel genes may play in pain hypersensitivity.

Inflammation can often cause pain hypersensitivity due to a number of factors: increased expression of pain receptors; altered neurotransmitter release in the spinal cord; heightened excitability of neurons; and - as demonstrated in these new findings - physical changes such as the growth of more neurites (sensory nerve projections in neurons). Voltage-gated calcium channels (VGCCs) play an important role in all of these changes, as the neurotransmitters they release control neuron-to-neuron communication.

"In inflammatory states, VGCCs play a role in sensory neurons becoming overactive, or hyperexcited." says Santosh Mishra, assistant professor of molecular biomedical sciences at NC State and lead author of a paper describing the work. "Additionally, the calcium molecules released and controlled by these channels regulate neurite growth. We wanted to look more closely at the role of a VGCC called Cav2.2, to see if it increased peripheral neurite outgrowth during inflammation."

In the peripheral nervous system, neurons are tuned to produce specific nociceptive signals. The TRPV1 and TRPM8 sensory neurons, for example, are associated with thermal sensations like heat and cold. MrgprD- and MrgprB4-expressing neurons, on the other hand, are associated with potentially damaging (like pinching) and low threshold mechanical sensations (like pleasant touch) respectively.

Mishra's team chose Cav2.2 due to its abundance in the dorsal root ganglia (DRG), which are clusters of sensory cells located at the root of the spinal nerves. Using an inflammatory mouse model with both in vitro and in vivo approaches, the team looked at the relationship between inflammation, Cav2.2 activity and afferent neurite growth (afferent neurons in the peripheral nervous system carry stimuli to the central nervous system). They found that inflammation increased expression of Cav2.2, which in turn increased afferent neurite growth and activity in thermosensitive neurons, but not in mechanical neurons.

"There was no increased expression of Cav2.2 channels in the mechanical neurons, and so there was no discernable effect on these neurons," Mishra says. "What we don't understand is why inflammation doesn't induce upregulation of calcium channels in mechanosensation the way that it does with thermal sensation. It could be that those neurons don't express as much of the Cav2.2 VGCC to begin with, but it is something that we will have to investigate further."

Mishra hopes that the work will help scientists uncover more about causes of chronic pain - particularly whether changes in peripheral nerve growth due to inflammation play a role in the shift from acute to chronic pain states.

"Most pain research focuses on particular receptors and neurotransmitters, not the actual sensory network such as afferent growth," Mishra says. "Afferents are like antennae. A receptor will tell you if the connection between the signal and the carrier is good, but antennae carry the receptors - so if there are more antennae, you receive more signal. In this model inflammation created more thermosensitive antennae, and so those sensations were felt more acutely."
The work appears in Frontiers in Neuroscience. Former NC State post-doctoral researcher Saumitra Pitake is first author. University of Pennsylvania Ph.D. student Leah Middleton and Assistant Professor of Biology Ishmail Abdus-Saboor also contributed to the work.

Note to editors: An abstract of the work follows.

"Inflammation Induced Sensory Nerve Growth and Pain Hypersensitivity Requires the N-Type Calcium Channel Cav2.2"

DOI: 10.3389/fnins.2019.01009

Authors: Saumitra Pitake, Santosh Mishra, North Carolina State University; Leah Middleton, Ishmail Abdus-Saboor, University of Pennsylvania

Published: Sept. 19 in Frontiers in Neuroscience


Voltage-gated calcium channels (VGCCs) are important mediators of pain hypersensitivity during inflammatory states, but their role in sensory nerve growth remains underexplored. Here, we assess the role of the N-type calcium channel Cav2.2 in the complete Freund's adjuvant (CFA) model of inflammatory pain. We demonstrate with in situ hybridization and immunoblotting, an increase in Cav2.2 expression after hind paw CFA injection in sensory neurons that respond to thermal stimuli, but not in two different mechanosensitive neuronal populations. Further, Cav2.2 upregulation post-CFA correlates with thermal but not mechanical hyperalgesia in behaving mice, and this hypersensitivity is blocked with a specific Cav2.2 inhibitor. Voltage clamp recordings reveal a significant increase in Cav2.2 currents post-CFA, while current clamp analyses demonstrate a significant increase in action potential frequency. Moreover, CFA-induced sensory nerve growth, which involves the extracellular signal-related kinase (ERK1/2) signaling pathway and likely contributes to inflammation-induced hyperalgesia, was blocked with the Cav2.2 inhibitor. Together, this work uncovers a role for Cav2.2 during inflammation, demonstrating that VGCC activity can promote thermal hyperalgesia through both changes in firing rates of sensory neurons as well as promotion of new neurite outgrowth.

North Carolina State University

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at