Inflammation amps up neurite growth, gene expression involved in heat, cold sensitivity

September 26, 2019

Researchers from North Carolina State University have found that inflammation increases neuronal activity, gene expression and sensory nerve (neurite) outgrowth in neurons involved in thermal - but not physical- sensations in mice. The work sheds light on the role that inflammation-induced overexpression of calcium channel genes may play in pain hypersensitivity.

Inflammation can often cause pain hypersensitivity due to a number of factors: increased expression of pain receptors; altered neurotransmitter release in the spinal cord; heightened excitability of neurons; and - as demonstrated in these new findings - physical changes such as the growth of more neurites (sensory nerve projections in neurons). Voltage-gated calcium channels (VGCCs) play an important role in all of these changes, as the neurotransmitters they release control neuron-to-neuron communication.

"In inflammatory states, VGCCs play a role in sensory neurons becoming overactive, or hyperexcited." says Santosh Mishra, assistant professor of molecular biomedical sciences at NC State and lead author of a paper describing the work. "Additionally, the calcium molecules released and controlled by these channels regulate neurite growth. We wanted to look more closely at the role of a VGCC called Cav2.2, to see if it increased peripheral neurite outgrowth during inflammation."

In the peripheral nervous system, neurons are tuned to produce specific nociceptive signals. The TRPV1 and TRPM8 sensory neurons, for example, are associated with thermal sensations like heat and cold. MrgprD- and MrgprB4-expressing neurons, on the other hand, are associated with potentially damaging (like pinching) and low threshold mechanical sensations (like pleasant touch) respectively.

Mishra's team chose Cav2.2 due to its abundance in the dorsal root ganglia (DRG), which are clusters of sensory cells located at the root of the spinal nerves. Using an inflammatory mouse model with both in vitro and in vivo approaches, the team looked at the relationship between inflammation, Cav2.2 activity and afferent neurite growth (afferent neurons in the peripheral nervous system carry stimuli to the central nervous system). They found that inflammation increased expression of Cav2.2, which in turn increased afferent neurite growth and activity in thermosensitive neurons, but not in mechanical neurons.

"There was no increased expression of Cav2.2 channels in the mechanical neurons, and so there was no discernable effect on these neurons," Mishra says. "What we don't understand is why inflammation doesn't induce upregulation of calcium channels in mechanosensation the way that it does with thermal sensation. It could be that those neurons don't express as much of the Cav2.2 VGCC to begin with, but it is something that we will have to investigate further."

Mishra hopes that the work will help scientists uncover more about causes of chronic pain - particularly whether changes in peripheral nerve growth due to inflammation play a role in the shift from acute to chronic pain states.

"Most pain research focuses on particular receptors and neurotransmitters, not the actual sensory network such as afferent growth," Mishra says. "Afferents are like antennae. A receptor will tell you if the connection between the signal and the carrier is good, but antennae carry the receptors - so if there are more antennae, you receive more signal. In this model inflammation created more thermosensitive antennae, and so those sensations were felt more acutely."
The work appears in Frontiers in Neuroscience. Former NC State post-doctoral researcher Saumitra Pitake is first author. University of Pennsylvania Ph.D. student Leah Middleton and Assistant Professor of Biology Ishmail Abdus-Saboor also contributed to the work.

Note to editors: An abstract of the work follows.

"Inflammation Induced Sensory Nerve Growth and Pain Hypersensitivity Requires the N-Type Calcium Channel Cav2.2"

DOI: 10.3389/fnins.2019.01009

Authors: Saumitra Pitake, Santosh Mishra, North Carolina State University; Leah Middleton, Ishmail Abdus-Saboor, University of Pennsylvania

Published: Sept. 19 in Frontiers in Neuroscience


Voltage-gated calcium channels (VGCCs) are important mediators of pain hypersensitivity during inflammatory states, but their role in sensory nerve growth remains underexplored. Here, we assess the role of the N-type calcium channel Cav2.2 in the complete Freund's adjuvant (CFA) model of inflammatory pain. We demonstrate with in situ hybridization and immunoblotting, an increase in Cav2.2 expression after hind paw CFA injection in sensory neurons that respond to thermal stimuli, but not in two different mechanosensitive neuronal populations. Further, Cav2.2 upregulation post-CFA correlates with thermal but not mechanical hyperalgesia in behaving mice, and this hypersensitivity is blocked with a specific Cav2.2 inhibitor. Voltage clamp recordings reveal a significant increase in Cav2.2 currents post-CFA, while current clamp analyses demonstrate a significant increase in action potential frequency. Moreover, CFA-induced sensory nerve growth, which involves the extracellular signal-related kinase (ERK1/2) signaling pathway and likely contributes to inflammation-induced hyperalgesia, was blocked with the Cav2.2 inhibitor. Together, this work uncovers a role for Cav2.2 during inflammation, demonstrating that VGCC activity can promote thermal hyperalgesia through both changes in firing rates of sensory neurons as well as promotion of new neurite outgrowth.

North Carolina State University

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to