Nav: Home

Jumping the gap may make electronics faster

September 26, 2019

A quasi-particle that travels along the interface of a metal and dielectric material may be the solution to problems caused by shrinking electronic components, according to an international team of engineers.

"Microelectronic chips are ubiquitous today," said Akhlesh Lakhtakia, Evan Pugh University Professor and Charles Godfrey Binder Professor of Engineering Science and Mechanics, Penn State. "Delay time for signal propagation in metal-wire interconnects, electrical loss in metals leading to temperature rise, and cross-talk between neighboring interconnects arising from miniaturization and densification limits the speed of these chips."

These electronic components are in our smartphones, tablets, computers and security systems and they are used in hospital equipment, defense installations and our transportation infrastructure.

Researchers have explored a variety of ways to solve the problem of connecting various miniaturized components in a world of ever shrinking circuits. While photonics, the use of light to transport information, is attractive because of its speed, this approach is problematic because the waveguides for light are bigger than current microelectronic circuits, which makes connections difficult.

A pulse-modulated SPP wave moving right, guided by the interface of a dielectric material (above) and a metal (below), suddenly encounters the replacement of the dielectric material by air. Most of the energy is transmitted to the air/metal interface but some is reflected to the dielectric/metal interface. The video spans 120 femtoseconds.

The researchers report in a recent issue of Scientific Reports that "The signal can travel long distances without significant loss of fidelity," and that "signals can possibly be transferred by SPP waves over several tens of micrometers (of air) in microelectronic chips."

They also note that calculations indicate that SPP waves can transfer information around a concave corner -- a situation, along with air gaps, that is common in microcircuitry.

SPPs are a group phenomenon. These quasi-particles travel along the interface of a conducting metal and a dielectric -- a non-conducting material that can support an electromagnetic field -- and on a macroscopic level, appear as a wave.

According to Lakhtakia, SPPs are what give gold its particular shimmery shine. A surface effect, under certain conditions electrons in the metal and polarized charges in the dielectric material can act together and form an SPP wave. This wave, guided by the interface of the two materials can continue propagating even if the metal wire has a break or the metal dielectric interface terminates abruptly. The SPP wave can travel in air for a few 10s of micrometers or the equivalent of 600 transistors laid end to end in a 14 nanometer technology chips.

SPP waves also only travel when in close proximity to the interface, so they do not produce crosstalk.

The problem with using SPP waves in designing circuits is that while researchers know experimentally that they exist, the theoretical underpinnings of the phenomenon were less defined. The Maxwell equations that govern SPP waves cover continuum of frequencies and are complicated.

"Instead of solving the Maxwell equations frequency by frequency, which is impractical and prone to debilitating computational errors, we took multiple snapshots of the electromagnetic fields," said Lakhtakia.

These snapshots, strung together, become a movie that shows the propagation of the pulse-modulated SPP wave.

"We are studying tough problems," said Lakhtakia. "We are studying problems that were unsolvable 10 years ago. Improved computational components changed our way of thinking about these problems, but we still need more memory."
-end-
Also working on this project were Rajan Agrahari, graduate student in electronics engineering and Pradip K. Jain, professor of electronics engineering, both at the Indian Institute of Technology, Varanasi, India.

The Council of Scientific and Industrial Research, India, and the Charles Godfrey Binder Endowment at Penn State, supported this work.

Penn State

Related Electronic Components Articles:

Biophysicists blend incompatible components in one nanofiber
Russian researchers showed the possibility of blending two incompatible components -- a protein and a polymer -- in one electrospun fiber.
Essential oil components can be tested as drug candidates
A research team at the VIB-KU Leuven Center for Microbiology and the KU Leuven Department of Biology showed that, contrary to generally held belief, most components of essential oils could meet the criteria set for drug candidates.
Kiss and run: How cells sort and recycle their components
What can be reused and what can be disposed of?
Physicists couple key components of quantum technologies
Researchers are engaged in intensive work on the components of quantum technologies - these include circuits processing information using single photons instead of electricity, as well as light sources producing such quanta of light.
FRESH 3D printing used to rebuild functional components of human heart
Scientists are a major step closer to 3D bioprintng functional organs, after team of Carnegie Mellon University researchers devise a method of rebuilding components of the human heart, according to a study published in Science.
Living components
Programmable structural dynamics successful for first time in self-organizing fiber structures
Researchers create multi-junction solar cells from off-the-shelf components
In a proof-of-concept paper, researchers from North Carolina State University detail a new approach for creating multi-junction solar cells using off-the-shelf components, resulting in lower cost, high-efficiency solar cells for use in multiple applications.
Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks
A new type of hydrogel material developed by Brown University researchers could soon make assembling complex microfluidic or soft robotic devices as simple as putting together a LEGO set.
Cryo-force spectroscopy reveals the mechanical properties of DNA components
Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures.
Innovative technique could pave way for new generation of flexible electronic components
Researchers at the University of Exeter have developed an innovative technique that could help create the next generation of everyday flexible electronics.
More Electronic Components News and Electronic Components Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.