Anti-Microbial Agent Kills Influenza Virus

September 26, 1998

U-M Studies Show New Anti-Microbial Agent Kills Influenza Virus And Prevents Infection In Mice

SAN DIEGO---University of Michigan scientists have tested a new anti-microbial agent and found it to be a quick and efficient killer of influenza A virus in cell cultures and in the nasal passages of laboratory mice.

"These are preliminary, small-scale studies, but the results indicate this material called BCTP shows promise as a new weapon against the influenza A virus," says James R. Baker Jr., M.D., professor of internal medicine and director of the Center for Biologic Nanotechnology in the U-M Medical School. "Its main advantages are its rapid killing action, lack of specificity and the fact that it is non-toxic to skin and mucous membranes."

A milky-white emulsion of tiny lipid droplets suspended in solvent, BCTP was developed by D. Craig Wright, M.D., chief research scientist at Novavax, Inc., and president of Novavax Biologics Division. Novavax is a bio-pharmaceutical company located in Columbia, Md. According to Wright, the material is made of water, soybean oil, Triton X 100 detergent and the solvent tri-n-butyl phosphate.

In presentations at the Interscience Conference on Antimicrobial Agents and Chemotherapy on Sept. 26, U-M research associates Andrzej Myc and Jon D. Reuter presented results of preliminary studies evaluating BCTP's effect on influenza A. Both research studies were funded by the Defense Advanced Research Projects Agency and directed by Baker.

Myc's study used Madin Darby Canine Kidney cells, used by researchers to evaluate the toxic effects of viruses. Myc incubated MDCK cells with influenza A virus and five different formulations of Novavax lipid structures. Using two different assay techniques, Myc then measured the number of cells infected with the virus. While all five formulations slowed the spread of the virus, BCTP was the most potent, reducing viral antigen levels by 99.6 percent.

In Reuter's study, different liquids were inserted into the nasal passages of four groups of laboratory mice. Control mice in Group 1 were given ordinary saltwater. Group 2 received BCTP alone. Group 3 received live influenza A virus and Group 4 was given a mixture of influenza A and BCTP. Groups 1, 2 and 4 stayed healthy, while all the mice in Group 3 developed severe pneumonia and two out of three mice died before the conclusion of the study.

"We learned several important things from these preliminary studies. The first is that BCTP is a highly effective killing agent for the influenza virus both at the cellular level and in living animals. Equally important is that BCTP had no toxic effects on nasal or lung membranes," Baker says. "We've shown that if we treat the virus with BCTP as it enters the nasal passages, we can prevent infection in mice. The next step is to see whether we can administer BCTP and the virus separately and still prevent infection. And the final step, of course, is to see whether it works as well in people as it does in mice."

While influenza vaccines are relatively effective at preventing the flu, Baker says there is a need for alternate preventive agents. "Influenza vaccines are expensive, they only are effective against a few viral strains each year and it takes time for immunity to develop. BCTP appears to inactivate the virus on contact."

The research is funded by DARPA's Unconventional Pathogen Countermeasures Program. The U-M and Novavax have filed a patent application covering BCTP's use as a decontamination agent for various anti-microbial applications. Baker is a member of the Novavax scientific advisory board, but has no significant financial interest in the company.
EDITORS: An announcement describing BCTP and the material's anti-microbial properties is being released simultaneously by Novavax, Inc.

University of Michigan

Related Influenza Articles from Brightsurf:

Predicting influenza epidemics
Researchers at Linköping University, Sweden, have developed a unique method to predict influenza epidemics by combining several sources of data.

Common cold combats influenza
As the flu season approaches, a strained public health system may have a surprising ally -- the common cold virus.

Scent-sensing cells have a better way to fight influenza
Smell receptors that line the nose get hit by Influenza B just like other cells, but they are able to clear the infection without dying.

New antivirals for influenza and Zika
Leuven researchers have deployed synthetic amyloids to trigger protein misfolding as a strategy to combat the influenza A and Zika virus.

Assessment of deaths from COVID-19, seasonal influenza
Publicly available data were used to analyze the number of deaths from seasonal influenza deaths compared with deaths from COVID-19.

Obesity promotes virulence of influenza
Obesity promotes the virulence of the influenza virus, according to a study conducted in mice published in mBio, an open-access journal of the American Society for Microbiology.

Influenza: combating bacterial superinfection with the help of the microbiota
Frenc researchers and from Brazilian (Belo Horizonte), Scottish (Glasgow) and Danish (Copenhagen) laboratories have shown for the first time in mice that perturbation of the gut microbiota caused by the influenza virus favours secondary bacterial superinfection.

Chemists unveil the structure of an influenza B protein
MIT chemists have discovered the structure of an influenza B protein called BM2, a finding that could help researchers design drugs that block the protein and help prevent the virus from spreading.

How proteins help influenza A bind and slice its way to cells
Researchers have provided new insight on how two proteins help influenza A virus particles fight their way to human cells.

Eating elderberries can help minimize influenza symptoms
Conducted by Professor Fariba Deghani, Dr. Golnoosh Torabian and Dr.

Read More: Influenza News and Influenza Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to