NSF awards $9 million for study of proteins

September 27, 2002

PITTSBURGH--The National Science Foundation has made a $9 million, five-year grant to a collaboration of Carnegie Mellon University computer scientists, University of Pittsburgh and Massachusetts Institute of Technology biological chemists, and others from Boston University and the National Canadian Research Council to advance a new field called computational biolinguistics.

Computational biolinguistics, which combines the use of computational tools, including statistical language modeling, machine learning methods and high-level language processing, will allow scientists to better understand how proteins work inside cells.

As in languages, where there are sequences of letters that fall into patterns that make them understandable, there are sequences of amino acids in proteins that can be read to understand their structure, dynamics and function. Sequences of amino acids and their constituents can be thought of as syllables or words that have particular properties.

A deeper understanding of the relationship between protein structure, dynamics and function can help to extract information hidden in the gene sequences of genomes, which may, in turn, help develop drugs to fight disease. Today, there is great societal demand to understand and treat degenerative diseases, many of which are based on defective triggers for protein shape and interactions.

The project's principal investigators are Raj Reddy, Carnegie Mellon's Simon University professor of computer science and robotics, and Judith Klein-Seetharaman, assistant professor of pharmacology at the University of Pittsburgh Medical School, who also holds an appointment at Carnegie Mellon's Language Technologies Institute (LTI).

"The Human Genome Project and related genome sequencing efforts have provided a wealth of data, which has stirred great hopes for increasing our understanding and treating of disease or for mimicking nature's inventions in nanomachine design," said Klein-Seetharaman. "But the precise relationship between a primary sequence and the structure, dynamics and function of the encoded proteins is one of the most fundamental unanswered questions in biology.

"The computational biolinguistics project promises to provide novel views and approaches to solving these challenges that would not be obvious without thinking in terms of the analogy between language and biology."

Carnegie Mellon will be the central site for the computational biolinguistics project. Its scientists will supply all of the necessary computational and language modeling technologies. Other partners will provide the bulk of biological and proteomic research and the laboratories where experimental work will take place.

There is also an industrial component to the project. Mathworks, Inc., of Natick, Mass., will work with Carnegie Mellon scientists to enhance its MatLab mathematical software to better support computational biolinguistics research. Medstory, Inc., Burlingame, Ca., which deals with drug innovation informatics, will focus on the clinical and drug development relevance of computational discoveries made under this program.

Reddy and Klein-Seetharaman, together with Language Technologies Institute director, computer science Professor Jaime Carbonell, and LTI associate professors Ronald Rosenfeld and Yiming Yang, have been doing preliminary work in computational biolinguistics for nearly two years. By applying statistical language modeling technologies to genome sequences, they have been able to detect protein fragment signatures from pathogens.

The computational biolinguistics grant is one of more than 300 announced by the National Science Foundation as part of its Information Technology Research (ITR) program. This year, NSF awarded a total of $144 million in new grants under the program.
-end-
For more information on the computational biolinguistics project, see: http://www-2.cs.cmu.edu/~blmt/.

For a searchable database of NSF's ITR awards, see http://www.itr.nsf.gov

Additional Contact Information:
Peter West, National Science Foundation
703-292-8070

Carnegie Mellon University

Related Amino Acids Articles from Brightsurf:

Igniting the synthetic transport of amino acids in living cells
Researchers from ICIQ's Ballester group and IRBBarcelona's Palacín group have published a paper in Chem showing how a synthetic carrier calix[4]pyrrole cavitand can transport amino acids across liposome and cell membranes bringing future therapies a step closer.

Microwaves are useful to combine amino acids with hetero-steroids
Aza-steroids are important class of compounds because of their numerous biological activities.

New study finds two amino acids are the Marie Kondo of molecular liquid phase separation
a team of biologists at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC) have identified unique roles for the amino acids arginine and lysine in contributing to molecule liquid phase properties and their regulation.

Prediction of protein disorder from amino acid sequence
Structural disorder is vital for proteins' function in diverse biological processes.

A natural amino acid could be a novel treatment for polyglutamine diseases
Researchers from Osaka University, National Center of Neurology and Psychiatry, and Niigata University identified the amino acid arginine as a potential disease-modifying drug for polyglutamine diseases, including familial spinocerebellar ataxia and Huntington disease.

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.

New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.

Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.

Read More: Amino Acids News and Amino Acids Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.