NSF awards NJIT physicist Dale Gary $832,927 to study radio waves

September 27, 2004

Solar physicists want to know more about the sun's magnetic fields because they are cited as the cause behind potentially damaging outbursts such as solar flares and coronal mass ejections. Such ejections sometimes throw matter and magnetic fields toward Earth that can cause dangerous radiation levels in space, and, if they hit Earth, will trigger magnetic storms.

The National Science Foundation (NSF) has awarded Dale Gary, PhD, professor of physics at New Jersey Institute of Technology (NJIT) $832,927 to continue his research to develop a global network of 100 radio telescopes to learn more about radio waves from the sun. NSF awarded Gary $400,000 for this project in 2002. Radio waves are one means of studying the sun's magnetic fields. In astronomy circles, Gary's project has come to be known as the Frequency Agile Solar Radiotelescope (FASR) consortium.

"The FASR consortium will ultimately create 100 receiving satellite dishes," said Gary. "For now, however, we're still testing data to see the best way to build these telescopes. "That's why we're calling this current project a FASR test-bed. From it, we hope to learn more about how to design and build FASR, but we will also do some new solar science.

Project goals include the construction of a broadband (eight GHz), digital three-element interferometer system. The funding will also support research into broadband radio observations such as how to eliminate radio frequency interference. The rise in cell phones, wireless data systems, and communication satellites has made radio astronomy more of a challenge.

Gary and his team will build the new apparatus onto his solar telescope in his laboratory at Owens Valley, CA. Gary is part of a group of solar physicists at NJIT who are associated with Big Bear Solar Observatory (BBSO) in Big Bear, CA, managed by NJIT Distinguished Professor of Physics Phil Goode. Gary's laboratory is located near Big Bear. In 1997, NJIT took over management of BBSO from California Institute of Technology.

Magnetic storms are fueled by the collision between the coronal mass ejections and Earth's magnetic field. The collisions cause auroras, or northern lights, in regions normally limited to the Earth's poles. Particularly severe storms cause the auroras to spread southward and if they do, they can destroy power transformers and disrupt some forms of radio communication.

"Until very recently, magnetic storms have been difficult to predict," said Gary. There are many people, though, who want to know more about such patterns. Doing a better job of predicting the solar causes of these storms is one of the goals of the FASR facility.

Magnetic storms can impact airline flights, because they produce dangerous levels of radiation for crews who regularly fly certain routes. Crews, traversing Siberia, a known target for storms, are vulnerable. "Suddenly we see an increasing interest in learning how to forecast solar storms because airlines, aiming to protect employees, prefer to steer clear of them," said Gary. Space forecasters, who provide information on the space environment, and satellite operators, who use radio waves for communications broadcasts, also need the information. Power plant operators are also concerned.
-end-


New Jersey Institute of Technology

Related Magnetic Fields Articles from Brightsurf:

Physicists circumvent centuries-old theory to cancel magnetic fields
A team of scientists including two physicists at the University of Sussex has found a way to circumvent a 178-year old theory which means they can effectively cancel magnetic fields at a distance.

Magnetic fields on the moon are the remnant of an ancient core dynamo
An international simulation study by scientists from the US, Australia, and Germany, shows that alternative explanatory models such as asteroid impacts do not generate sufficiently large magnetic fields.

Modelling extreme magnetic fields and temperature variation on distant stars
New research is helping to explain one of the big questions that has perplexed astrophysicists for the past 30 years - what causes the changing brightness of distant stars called magnetars.

Could megatesla magnetic fields be realized on Earth?
A team of researchers led by Osaka University discovered a novel mechanism called a ''microtube implosion,'' demonstrating the generation of megatesla-order magnetic fields, which is three orders of magnitude higher than those ever experimentally achieved.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

A tiny instrument to measure the faintest magnetic fields
Physicists at the University of Basel have developed a minuscule instrument able to detect extremely faint magnetic fields.

Graphene sensors find subtleties in magnetic fields
Cornell researchers used an ultrathin graphene ''sandwich'' to create a tiny magnetic field sensor that can operate over a greater temperature range than previous sensors, while also detecting miniscule changes in magnetic fields that might otherwise get lost within a larger magnetic background.

Twisting magnetic fields for extreme plasma compression
A new spin on the magnetic compression of plasmas could improve materials science, nuclear fusion research, X-ray generation and laboratory astrophysics, research led by the University of Michigan suggests.

How magnetic fields and 3D printers will create the pills of tomorrow
Doctors could soon be administering an entire course of treatment for life-threatening conditions with a 3D printed capsule controlled by magnetic fields thanks to advances made by University of Sussex researchers.

Researchers develop ultra-sensitive device for detecting magnetic fields
The new magnetic sensor is inexpensive to make, works on minimal power and is 20 times more sensitive than many traditional sensors.

Read More: Magnetic Fields News and Magnetic Fields Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.