Loss of gene leads to protein splicing and buildup of toxic proteins in neurons

September 27, 2007

JACKSONVILLE, Fla. -- Researchers at Mayo Clinic in Jacksonville have discovered how loss of a gene can lead to accumulation of toxic proteins in the brain, resulting in a common dementia, and they say this mechanism may be important in a number of age-related neurological disorders.

In the Sept. 26 issue of the Journal of Neuroscience, the scientists demonstrate that absence of a gene known as progranulin leads to errant splicing of a protein that usually operates within the nucleus of a nerve cell (neuron). When cut these proteins move into the body of the cell, and begin to stick together and form a thicket that grows, eventually disrupting the normal functioning of the neuron, the researchers say.

Clumps of this protein, TDP-43, have been found in a number of older age dementias, including Alzheimer's Disease (AD), Frontal Temporal Dementia (FTD), and in amyotrophic lateral sclerosis (ALS).

Not only does the study potentially explain why TDP-43 pathology is present in a number of neurodegenerative diseases, it also offers new research routes to take in looking for beneficial treatments, says the study's lead investigator, Leonard Petrucelli, Ph.D. "Our work opens opportunities on possible future therapeutic applications, from approaches to novel drug discovery to the continued exploration of cell survival systems," he says.

Mayo investigators filled in this piece of the dementia puzzle by exploring possible connections between two recent ground-breaking discoveries. In July, 2006, Mayo researchers reported in Nature that a form of FTD not caused by tau accumulation in neurons was due to mutations in the progranulin gene. Progranulin produces a protein that helps neurons survive, and so far, the research group has found more than 40 different mutations in the gene can directly cause FTD.

The second study, reported in October, 2006, in Science by researchers at the University of Pennsylvania School of Medicine, found that the protein clogging brains of patients with FTD and ALS is TDP-43. The protein was recovered from post-mortem brain tissue and was found only in areas affected by the diseases. For example, in ALS patients it was found in the spinal cord motor neurons which control movement, and in patients with FTD, which is second most common form of dementia in people under age 65, clumps of TDP-43 were found in the frontal and temporal lobes which control the judgment and thought process disrupted in the disease. In its normal state, TDP-43 is believed to help genes produce proteins.

In this study, Mayo researchers investigated whether progranulin is involved in TDP-43 processing. Suppressing progranulin expression in neurons led to accumulation of TDP-43 fragments, they found, and further discovered that this cleavage depends on the caspase 3 enzyme. Caspases cut other proteins and thus play a crucial role in pushing a cell to die when it needs to. It makes sense that these caspase might be activated when progranulin is mutated, Dr. Petrucelli says, because loss of progranulin can activate cell death signaling. "We are now looking into how mutations in progranulin leads to an increase in caspase activity," he says. "Progranulin could be acting a protective chaperone where it binds to TDP-43, and may protect it from cleavage."

Theoretically, suppression of caspase 3 might stop the cutting and accumulation of TDP-43, but such a strategy could not work clinically given that caspases are needed throughout the body for normal functioning, Dr. Petrucelli says. "However, it might be possible to identify other compounds that specifically prevent the fragmentation and redistribution of TDP-43, and that is an issue we are now studying."

At this point, researchers don't know if progranulin mutations are present in ALS or in AD.
-end-
The study was funded by the Mayo Clinic Foundation and by the National Institute on Aging, part of the National Institutes of Health. In this study, Yong-Jie Zhang, Ph.D., and Ya-fei Xu, M.D., both of whom contributed equally as first authors, and other Mayo Clinic, Jacksonville, contributors include Dennis Dickson, M.D., and Rachel Bailey, B.S. Other authors include Chad Dickey, Ph.D., from the University of South Florida; Emanuele Buratt,i Ph.D., and Francisco Baralle, M.D., from the International Center for Genetic Engineering and Biotechnology in Trieste, Italy; and Stuart Pickering-Brown, Ph.D., from the University of Manchester in the United Kingdom.

To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

Mayo Clinic

Related Dementia Articles from Brightsurf:

The danger of Z-drugs for dementia patients
Strong sleeping pills known as 'Z-drugs' are linked with an increased risk of falls, fractures and stroke among people with dementia, according to new research.

The long road to dementia
Alzheimer's disease develops over decades. It begins with a fatal chain reaction in which masses of misfolded beta-amyloid proteins are produced that in the end literally flood the brain.

Why people with dementia go missing
People with dementia are more likely to go missing in areas where road networks are dense, complicated and disordered - according to new research from the University of East Anglia.

PTSD may double risk of dementia
People who have experienced post-traumatic stress disorder (PTSD) are up to twice as likely to develop dementia later in life, according to a new study by UCL researchers, published in the British Journal of Psychiatry.

Dementia education
School-based dementia education could deliver much needed empathy and understanding for older generations as new research from the University of South Australia shows it can significantly improve dementia knowledge and awareness among younger generations.

Building dementia friendly churches
A project to help church communities become more 'dementia friendly' has had a significant impact across the country.

A "feeling" for dementia?
A research team led by the DZNE concludes that personal perception can be an important indicator for the early detection of Alzheimer's disease.

New biomarker for dementia diagnosis
Medical researchers in the UK and Australia have identified a new marker which could support the search for novel preventative and therapeutic treatments for dementia.

Digital solutions for dementia care
Telehealth delivery of dementia care in the home can be as effective as face-to-face home visit services if carers and recipients take advantage of the technologies available, Australian researchers say.

Despite a marked reduction in the prevalence of dementia, the number of people with dementia is set to double by 2050 according to new Alzheimer Europe report
Today, at a European Parliament lunch debate, Alzheimer Europe launched a new report presenting the findings of its collaborative analysis of recent prevalence studies and setting out updated prevalence rates for dementia in Europe.

Read More: Dementia News and Dementia Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.