Nav: Home

Plasma thruster: New space debris removal technology

September 27, 2018

The Earth is currently surrounded by debris launched into space over several decades. This space junk can collide with satellites and not only cause damage to spacecraft but also result in further debris being created.

To preserve a secure space environment, the active removal or de-orbiting of space debris is an emergent technological challenge. If remedial action is not taken in the near future it will be difficult to sustain human space activities. To overcome this issue, several methods for the removal and de-orbiting of debris have been proposed so far; classified as either contact (e.g., robotic arm, tether net, electrodynamic tether) or contactless methods (e.g., laser, ion beam shepherd), with the contactless methods proving to be more secure.

The ion beam shepherd contactless method uses a plasma beam ejected from the satellite to impart a force to the debris thereby decelerating it, which results in it falling to a lower altitude, re-entering the Earth's atmosphere and burning up naturally. However, ejecting the plasma beam toward the debris accelerates the satellite in the opposite direction, which makes it difficult to maintain a consistent distance between debris and the satellite.

To safely and effectively remove debris, two propulsion systems have to be mounted on the satellite to eject bi-directional plasma beams (Figure 1). This interferes with a satellite system integration requiring the reduction of a satellite's weight and size.

"If the debris removal can be performed by a single high-power propulsion system, it will be of significant use for future space activity," said Associate Professor Kazunori Takahashi from Tohoku University in Japan, who is leading research on new technology to remove space debris in collaboration with colleagues at the Australian National University.

The Japanese and Australian research group has demonstrated that a helicon plasma thruster can yield the space debris removal operation using a single propulsion system (Figure 2). In the laboratory experiment, the bi-directional ejection of plasma plumes from the single plasma thruster was precisely controlled with a magnetic field and gas injection; then the decelerating force imparted to an object simulating debris was measured whilst maintaining the zero-net force to the thruster (and satellite). The system, having the single plasma thruster, can be operational in three operational modes: acceleration of the satellite; deceleration of the satellite; and debris removal.

"The helicon plasma thruster is an electrodeless system, which allows it to undertake long operations performed at a high-power level." says Takahashi, "This discovery is considerably different to existing solutions and will make a substantial contribution to future sustainable human activity in space."
-end-


Tohoku University

Related Technology Articles:

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.
Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.
Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.
Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.
The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).
AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.
Transformative technology
UC Davis neuroscientists have developed fluorescence sensors that are opening a new era for the optical recording of dopamine activity in the living brain.
Do the elderly want technology to help them take their medication?
Over 65s say they would find technology to help them take their medications helpful, but need the technology to be familiar, accessible and easy to use, according to research by Queen Mary University of London and University of Cambridge.
Technology detecting RNase activity
A KAIST research team of Professor Hyun Gyu Park at Department of Chemical and Biomolecular Engineering developed a new technology to detect the activity of RNase H, a RNA degrading enzyme.
Taking technology to the next level
Physicists from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) developed a new hybrid integrated platform, promising to be a more advanced alternative to conventional integrated circuits.
More Technology News and Technology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.