Smart devices could soon tap their owners as a battery source

September 27, 2018

The world is edging closer to a reality where smart devices are able to use their owners as an energy resource, say experts from the University of Surrey.

In a study published by the Advanced Energy Materials journal, scientists from Surrey's Advanced Technology Institute (ATI) detail an innovative solution for powering the next generation of electronic devices by using Triboelectric Nanogenerators (TENGs). Along with human movements, TENGs can capture energy from common energy sources such as wind, wave, and machine vibration.

A TENG is an energy harvesting device that uses the contact between two or more (hybrid, organic or inorganic) materials to produce an electric current.

Researchers from the ATI have provided a step-by-step guide on how to construct the most efficient energy harvesters. The study introduces a "TENG power transfer equation" and "TENG impedance plots", tools which can help improve the design for power output of TENGs.

Professor Ravi Silva, Director of the ATI, said: "A world where energy is free and renewable is a cause that we are extremely passionate about here at the ATI (and the University of Surrey) - TENGs could play a major role in making this dream a reality. TENGs are ideal for powering wearables, internet of things devices and self-powered electronic applications. This research puts the ATI in a world leading position for designing optimized energy harvesters."

Ishara Dharmasena, PhD student and lead scientist on the project, said: "I am extremely excited with this new study which redefines the way we understand energy harvesting. The new tools developed here will help researchers all over the world to exploit the true potential of triboelectric nanogenerators, and to design optimised energy harvesting units for custom applications."
-end-


University of Surrey

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.