How swarms of nanomachines could improve the efficiency of any machine

September 27, 2018

All machines convert one form of energy into another form - for example a car engine turns the energy stored in fuel into motion energy. Those processes of energy conversion, described by the theory called thermodynamics, don't only take place on the macro-level of big machines, but also at the micro-level of molecular machines that drive muscles or metabolic processes and even on the atomic level. The research team of Prof. Massimiliano Esposito of the University of Luxembourg studies the thermodynamics of small nanomachines only consisting of a few atoms. In a paper published in the prestigious scientific journal Physical Review X, they outline how these small machines behave in concert. Their insights could be used to improve the energy efficiency of all kinds of machines, big or small.

Recent progress in nanotechnology has enabled researchers to understand the world in ever-smaller scales and even allows for the design and manufacture of extremely small artificial machines. "There is evidence that these machines are far more efficient than large machines, such as cars. Yet in absolute terms, the output is low compared to the needs we have in daily life applications," explains Tim Herpich, PhD student at Esposito's research group and main author of the paper. "That is why we studied how the nanomachines interact with each other and looked at how ensembles of those small machines behave. We wanted to see if there are synergies when they act in concert."

The researchers found that the nanomachines under certain conditions start to arrange in "swarms" and synchronise their movements. "We could show that the synchronisation of the machines triggers significant synergy effects, so that the overall energy output of the ensemble is far greater than the sum of the individual outputs," said Prof. Esposito. While this is basic research, the principles outlined in the paper could potentially be used to improve the efficiency of any machine in the future, the researcher explains.

In order to simulate and study the energetic behaviour of swarms of nanomachines, the scientists created mathematical models that are based on existing literature and outcomes of experimental research.
-end-


University of Luxembourg

Related Thermodynamics Articles from Brightsurf:

New research explores the thermodynamics of off-equilibrium systems
Arguably, almost all truly intriguing systems are ones that are far away from equilibrium -- such as stars, planetary atmospheres, and even digital circuits.

Researchers discover a uniquely quantum effect in erasing information
Researchers from Trinity College Dublin have discovered a uniquely quantum effect in erasing information that may have significant implications for the design of quantum computing chips.

New model examines how societal influences affect US political opinions
Northwestern University researchers have developed the first quantitative model that captures how politicized environments affect U.S. political opinion formation and evolution.

Physicists build circuit that generates clean, limitless power from graphene
Physicists at the University of Arkansas have successfully generated an electrical current from the atomic motion of graphene, discovering a new source of clean, limitless power.

Theater improvisation techniques show promising results for science classroom engagement
A researcher at the University of Maryland, Baltimore County (UMBC) has developed a unique method to improve class participation in a graduate-level thermodynamics course by incorporating theater improvisation activities in the classroom.

Extracting order from a quantum measurement finally shown experimentally
In physics, it is essential to be able to show a theoretical assumption in actual, physical experiments.

Thermodynamics of computation: A quest to find the cost of running a Turing machine
Turing machines are widely believed to be universal, in the sense that any computation done by any system can also be done by a Turing machine.

Holographic cosmological model and thermodynamics on the horizon of the universe
A holographic cosmological model with a power-law term has been proposed by a Kanazawa University researcher to study thermodynamic properties on the horizon of the Universe.

APS tip sheet: Ultimate strength of metals
A new model is able to accurately determine the peak strength of polycrystalline metals.

How sensitive can a quantum detector be?
Measuring the energy of quantum states requires detecting energy changes so exceptionally small they are hard to pick out from background fluctuations, like using only a thermometer to try and work out if someone has blown out a candle in the room you're in.

Read More: Thermodynamics News and Thermodynamics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.