Nav: Home

Study finds age hinders cancer development

September 27, 2019

A new study, published in Aging Cell, has found that human ageing processes may hinder cancer development.

Ageing is one of the biggest risk factor for cancer. However, the biological mechanisms behind this link are still unclear.

Each cell in the human body is specialised to carry out certain tasks and will only need to express certain genes. Gene expression is the process by which specific genes are activated to produce a required protein.

Gene expression analyses have been used to study cancer and ageing, but only a few studies have investigated the relationship between gene expression changes in these two processes.

In an effort to better understand the biological mechanisms researchers from the University of Liverpool's Integrative Genomics of Ageing Group, led by Dr Joao Pedro De Magalhaes, compared how genes differentially expressed with age and genes differentially expressed in cancer among nine human tissues.

Normally, a healthy cell can divide in a controlled manner. In contrast, senescent or 'sleeping' cells have lost their ability to divide. As we age, the number of senescent cells in our bodies increase, which then drive many age-related processes and diseases.

Genetic mutations triggered by things such as UV exposure can sometimes cause cells to replicate uncontrollably -- and uncontrolled cell growth is cancer. Cells are often able to detect these mutations and in response go to sleep to stop them dividing.

The researchers found that in most of the tissues examined, ageing and cancer gene expression 'surprisingly' changed in the opposite direction. These overlapping gene sets were related to several processes, mainly cell cycle and the immune system. Moreover, cellular senescence changed in the same direction as ageing and in the opposite direction of cancer signatures.

The researchers believe the changes in ageing and cellular senescence might relate to a decrease in cell proliferation, while cancer changes shift towards an increase in cell division.

Dr De Magalhaes, said: "One of the reasons our bodies have evolved to have senescent cells is to suppress cancers. But then it seems that senescent cells accumulate in aged human tissues and may contribute to ageing and degeneration. Importantly, our work challenges the traditional view concerning the relationship between cancer and ageing and suggests that ageing processes may hinder cancer development. While mutations accumulate with age and are the main driver of cancer, ageing tissues may hinder cell proliferation and consequently cancer. So you have these two opposite forces, mutations driving cancer and tissue degeneration hindering it. This may explain why at very advanced ages cancer incidence levels off and may even decline."

However, an alternative explanation comes from evolutionary biology. First author Kasit Chatsirisupachai, explains: "And aged tissue might actually be a better environment for a rogue cancer cell to proliferate because the cancer cell will have an evolutionary advantage."

Dr De Magalhaes: "Our results highlight the complex relationship between ageing, cancer and cellular senescence and suggest that in most human tissues ageing processes and senescence act in tandem while being detrimental to cancer. But more mechanistic studies are now needed."
-end-
The full study, entitled 'A Human Tissue-Specific Transcriptomic Analysis Reveals that Ageing Hinders Cancer and Boosts Cellular Senescence', can be found here https://onlinelibrary.wiley.com/doi/10.1111/acel.13041

University of Liverpool

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
More Cancer News and Cancer Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.