Thermal siphon effect: heat flows from low temperature to high temperature

September 27, 2019

Heat energy spontaneously goes from higher temperature to lower temperature. However, recently, a team from China and the USA (Kezhao Xiong and Zonghua Liu from East China Normal University, Chunhua Zeng from Kunming University of Science and Technology, and Baowen Li from University of Colorado Boulder) revealed that in some complex network structures, heat energy can transfer from a node with lower temperature to another node with higher temperature, which we call thermal siphon effect. The team even discovered that this effect becomes more evident with the decrease of network assortativity.

To understand this abnormal phenomenon (Figure a), the team studied power spectra of the nodes (Fig c and d), and the transport of the energy within the spectra range. They found that, within the power spectrum range, heat energy still transfers from (effective) high temperature node to (effective) low temperature node.

Moreover, an optimal network structure is discovered, that displays a small thermal conductance and a large electrical conductance simultaneously.

It is well known that realistic systems for heat management and control are not regular lattices but complex networks such as the thermal devices of nanotube and nanowire networks, whose topologies are fundamentally different from the cases of 1D and 2D lattices. In particular, the ideal materials for thermoelectric applications are phonon glass and electric crystal, namely good electric conduction and poor thermal conduction.

Therefore, the study may shed a new light on the search of good thermoelectric materials.
See the article:

Thermal siphon phenomenon and thermal/electric conduction in complex networks
Kezhao Xiong, Zonghua Liu, Chunhua Zeng, Baowen Li
Natl Sci Rev, 2019, doi: 10.1093/nsr/nwz128

Science China Press

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to