Nav: Home

Light in a new light

September 27, 2019

In a paper published today in Nature's NPJ Quantum Information, Omar Magaña-Loaiza, assistant professor in the Louisiana State University (LSU) Department of Physics & Astronomy, and his team of researchers describe a noteworthy step forward in the quantum manipulation and control of light, which has far-reaching quantum technology applications in imaging, simulation, metrology, computation, communication, and cryptography, among other areas. The paper, titled "Multiphoton quantum-state engineering using conditional measurements," includes co-authors from the National Institute of Standards and Technology in Boulder, Colo., institutes and universities in Mexico and Germany, as well as Chenglong You, an LSU postdoctoral researcher and member of Dr. Magaña-Loaiza's experimental quantum photonics group.

At the quantum level, light remains difficult to control for engineering purposes.

"If we're able to control photon fluctuations and associated noise," Magaña-Loaiza said. "Then, we can make more precise measurements. This technology is new and will change our field."

Physicists all over the world are racing to develop techniques to preserve light's quantum properties at large enough scales for practical purposes. While physicists can so far control the quantum properties of single photons and pairs of photons, leading to powerful applications through entanglement and "heralding" (wherein knowledge of one photon gives relatively certain knowledge about another, not-yet-detected photon), Magaña-Loaiza's team successfully demonstrated a method to generate groups of photons with these same powerful properties--known as multiphoton states.

By subtracting out some photons, Magaña-Loaiza said, "We can reshape the form of the wavepacket and artificially increase the number of photons in it."

Moreover, whereas previous scientists produced multiphoton states using multiple sources, Magaña-Loaiza's team managed to build a single source to produce multiphoton packets that share similarities with entangled lasers: a major technological achievement.

But perhaps most impressively, the publication reveals that Magaña-Loaiza's team can generate multiple kinds of light with manipulable quantum states in one single setup.

"I really think we're doing something new, and I think people are starting to recognize this," he said.

In addition to generating single photons, they can also produce entangled laser light and entangled natural light (i.e., sunlight) with desired properties.

"If you're able to manipulate light at this fundamental level you can engineer light," he said.

Magaña-Loaiza obtained his Ph.D. in experimental quantum optics at the University of Rochester in 2016 before becoming a research associate at the National Institute of Standards and Technology in Boulder, Colo. He then joined the faculty at LSU in August 2018, where he leads the experimental quantum photonics group. Making exciting advances in quantum metrology, the group is using sources of entangled photons to develop multiple quantum technologies. A paper Magaña-Loaiza recently co-authored with Dr. You while the latter was still a doctoral student, "Multiphoton quantum metrology without pre- and post-selected measurements," including contributions from LSU physicist Jonathan Dowling and several collaborators, was selected as a winner of the Emil Wolf Outstanding Student Paper Competition this week.
-end-
More information about Magaña-Loaiza and his research is available on his faculty website as well as on the website for the LSU Quantum Photonics Lab. The paper, "Multiphoton quantum-state engineering using conditional measurements," is available online in Nature's NPJ Quantum Information.

Louisiana State University

Related Photons Articles:

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.
The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Producing single photons from a stream of single electrons
Researchers at the University of Cambridge have developed a novel technique for generating single photons, by moving single electrons in a specially designed light-emitting diode (LED).
Counting photons is now routine enough to need standards
NIST has taken a step toward enabling universal standards for single-photon detectors (SPDs), which are becoming increasingly important in science and industry.
Scientists have found out why photons flying from other galaxies do not reach the Earth
In the Universe there are extragalactic objects such as blazars, which very intensively generate a powerful gamma-ray flux, part of photons from this stream reaches the Earth, as they say, directly, and part -- are converted along the way into electrons, then again converted into photons and only then get to us.
Researchers discover new way to split and sum photons with silicon
A team of researchers at The University of Texas at Austin and the University of California, Riverside have found a way to produce a long-hypothesized phenomenon -- the transfer of energy between silicon and organic, carbon-based molecules -- in a breakthrough that has implications for information storage in quantum computing, solar energy conversion and medical imaging.
Breaking the limits: Discovery of the highest-energy photons from a gamma-ray burst
Gamma-ray bursts (GRBs) are brief and extremely powerful cosmic explosions, suddenly appearing in the sky, about once per day.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
More Photons News and Photons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.