Nav: Home

Light in a new light

September 27, 2019

In a paper published today in Nature's NPJ Quantum Information, Omar Magaña-Loaiza, assistant professor in the Louisiana State University (LSU) Department of Physics & Astronomy, and his team of researchers describe a noteworthy step forward in the quantum manipulation and control of light, which has far-reaching quantum technology applications in imaging, simulation, metrology, computation, communication, and cryptography, among other areas. The paper, titled "Multiphoton quantum-state engineering using conditional measurements," includes co-authors from the National Institute of Standards and Technology in Boulder, Colo., institutes and universities in Mexico and Germany, as well as Chenglong You, an LSU postdoctoral researcher and member of Dr. Magaña-Loaiza's experimental quantum photonics group.

At the quantum level, light remains difficult to control for engineering purposes.

"If we're able to control photon fluctuations and associated noise," Magaña-Loaiza said. "Then, we can make more precise measurements. This technology is new and will change our field."

Physicists all over the world are racing to develop techniques to preserve light's quantum properties at large enough scales for practical purposes. While physicists can so far control the quantum properties of single photons and pairs of photons, leading to powerful applications through entanglement and "heralding" (wherein knowledge of one photon gives relatively certain knowledge about another, not-yet-detected photon), Magaña-Loaiza's team successfully demonstrated a method to generate groups of photons with these same powerful properties--known as multiphoton states.

By subtracting out some photons, Magaña-Loaiza said, "We can reshape the form of the wavepacket and artificially increase the number of photons in it."

Moreover, whereas previous scientists produced multiphoton states using multiple sources, Magaña-Loaiza's team managed to build a single source to produce multiphoton packets that share similarities with entangled lasers: a major technological achievement.

But perhaps most impressively, the publication reveals that Magaña-Loaiza's team can generate multiple kinds of light with manipulable quantum states in one single setup.

"I really think we're doing something new, and I think people are starting to recognize this," he said.

In addition to generating single photons, they can also produce entangled laser light and entangled natural light (i.e., sunlight) with desired properties.

"If you're able to manipulate light at this fundamental level you can engineer light," he said.

Magaña-Loaiza obtained his Ph.D. in experimental quantum optics at the University of Rochester in 2016 before becoming a research associate at the National Institute of Standards and Technology in Boulder, Colo. He then joined the faculty at LSU in August 2018, where he leads the experimental quantum photonics group. Making exciting advances in quantum metrology, the group is using sources of entangled photons to develop multiple quantum technologies. A paper Magaña-Loaiza recently co-authored with Dr. You while the latter was still a doctoral student, "Multiphoton quantum metrology without pre- and post-selected measurements," including contributions from LSU physicist Jonathan Dowling and several collaborators, was selected as a winner of the Emil Wolf Outstanding Student Paper Competition this week.
-end-
More information about Magaña-Loaiza and his research is available on his faculty website as well as on the website for the LSU Quantum Photonics Lab. The paper, "Multiphoton quantum-state engineering using conditional measurements," is available online in Nature's NPJ Quantum Information.

Louisiana State University

Related Photons Articles:

Scientists have found out why photons flying from other galaxies do not reach the Earth
In the Universe there are extragalactic objects such as blazars, which very intensively generate a powerful gamma-ray flux, part of photons from this stream reaches the Earth, as they say, directly, and part -- are converted along the way into electrons, then again converted into photons and only then get to us.
Researchers discover new way to split and sum photons with silicon
A team of researchers at The University of Texas at Austin and the University of California, Riverside have found a way to produce a long-hypothesized phenomenon -- the transfer of energy between silicon and organic, carbon-based molecules -- in a breakthrough that has implications for information storage in quantum computing, solar energy conversion and medical imaging.
Breaking the limits: Discovery of the highest-energy photons from a gamma-ray burst
Gamma-ray bursts (GRBs) are brief and extremely powerful cosmic explosions, suddenly appearing in the sky, about once per day.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Quantum physics: Ménage à trois photon-style
When two photons become entangled, the quantum state of the first will correlate perfectly with the quantum state of the second.
Converting absorbed photons into twice as many excitons: Successful high-efficiency energy conversion with organic monolayer on gold nanocluster surface
A group of researchers from Kobe and Keio universities found that when light was exposed to the surface of a tetracene alkanethiol-modified gold nanocluster, which they developed themselves, twice as many excitons could be converted compared to the number of photons absorbed by the tetracene molecules.
Illinois researchers create first three-photon color-entangled W state
Researchers at the University of Illinois at Urbana-Champaign have constructed a quantum-mechanical state in which the colors of three photons are entangled with each other.
Robert Alfano team identifies new 'Majorana Photons'
Hailed as a pioneer by Photonics Media for his previous discoveries of supercontinuum and Cr tunable lasers, City College of New York Distinguished Professor of Science and Engineering Robert R.
Dresden physicists use nanostructures to free photons for highly efficient white OLEDs
Thanks to intensive research in the past three decades, organic light-emitting diodes (OLEDs) have been steadily conquering the electronics market -- from OLED mobile phone displays to roll-out television screens, the list of applications is long.
Generating high-quality single photons for quantum computing
MIT researchers have designed a way to generate, at room temperature, more single photons for carrying quantum information.
More Photons News and Photons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab