New analysis puts dark matter back into elliptical galaxies

September 28, 2005

SANTA CRUZ, CA--According to the prevailing "cold dark matter" theory of the evolution of the universe, every galaxy is surrounded by a halo of dark matter that can only be detected indirectly by observing its gravitational effects. This theory faced a challenge in 2003, when a team of astronomers reported a surprising absence of dark matter in elliptical galaxies. But a new analysis published in the September 29 issue of the journal Nature provides an explanation for the earlier observations that fits comfortably with the standard theory and puts the dark matter back into elliptical galaxies.

"These are very normal, nearby elliptical galaxies that they studied, and if those galaxies don't have dark matter it calls into question the whole theory of cold dark matter," said Joel Primack, professor of physics at the University of California, Santa Cruz, and a coauthor of the Nature paper.

"A dearth of dark matter in elliptical galaxies is especially puzzling in the context of the standard theory of galaxy formation, which assumes that ellipticals originate from mergers of disk galaxies," added Avishai Dekel, professor of physics at the Hebrew University of Jerusalem and first author of the Nature paper.

"Massive dark matter halos are clearly detected in disk galaxies, so where did they disappear to during the mergers?" said Dekel, currently a visiting researcher at UCSC.

Primack, one of the originators and developers of the cold dark matter theory, uses supercomputers to run simulations of galaxy formation and the evolution of structure in the universe. The new paper used simulations of galaxy mergers run last year by Thomas J. Cox, then a graduate student working with Primack at UCSC and now a postdoctoral researcher at Harvard University.

The simulations show that the observations reported in 2003 are a predictable consequence of the violent galactic mergers that give rise to elliptical galaxies, Primack said. The simulations were analyzed by Dekel, Felix Stoehr, and Gary Mamon at the Institute of Astrophysics in Paris, where Dekel holds a Blaise Pascal International Chair. UCSC graduate student Greg Novak also contributed to the analysis.

Elliptical galaxies are thought to form when two spiral galaxies collide and merge. Whereas spiral galaxies are dominated by flattened, rotating disks of stars and gas, elliptical galaxies are round, smooth collections of stars.

Evidence for dark matter halos around spiral galaxies comes from studying the circular motions of stars in these galaxies. Because most of the visible mass in a galaxy is concentrated in the central region, stars at great distances from the center would be expected to move more slowly than stars closer in. Instead, careful observations of spiral galaxies show that the rotational speed of stars in the outskirts of the disk remains constant as far out as astronomers can measure it.

The reason for this, according to cold dark matter theory, is the presence of an enormous halo of unseen dark matter surrounding the galaxy and exerting its gravitational influence on the stars. Additional support for dark matter halos has come from a variety of other observations.

In elliptical galaxies, however, it has been difficult to study the motions of stars at great distances from the center. The 2003 study (A. J. Romanowsky et al., Science 301:1696-1698) focused on bright planetary nebulas in the outer parts of four nearby elliptical galaxies. Planetary nebulas are old stars that have blown off their outer layers and glow brightly in characteristic wavelengths of light. The researchers were able to determine the line-of-sight velocities of large numbers of planetary nebulas in these elliptical galaxies. They found a decrease in the velocities with increasing distance from the center of the galaxy, which is inconsistent with simple models of the gravitational effects of dark matter halos.

Part of the explanation put forth in the new Nature paper lies in the fact that the velocities were measured along the line of sight. "You cannot measure the absolute speeds of the stars, but you can measure their relative speeds along the line of sight, because if a star is moving toward us its light is shifted to shorter wavelengths, and if it is moving away from us its light is shifted to longer wavelengths," Primack explained.

This limitation would not be a problem if the orbits of the observed stars were randomly oriented with respect to the line of sight, because any differences resulting from the orientations of the orbits would average out over a large number of observations. According to Cox's simulations, however, the stars farthest from the center of the galaxy at any given time are likely to be moving in elongated, eccentric orbits such that most of their motion is perpendicular to the line of sight. Therefore, they could be moving at high velocities without exhibiting much motion toward or away from the observers.

To understand why, it is necessary to look at what happens to the stars during galaxy mergers. As the merging galaxies interact, the stars themselves do not collide because they are separated by great distances, so the two galaxies essentially pass through one another. But the huge gravitational fields of the galaxies cause powerful tidal disturbances. Some of the stars are flung outward in extended tidal tails as the cores of the galaxies pass close by one another and spin apart. Sometimes the cores remain connected by a tidal bridge of stars and gas. Eventually, gravity pulls the cores back together, and the stars that were flung outward fall back in toward the center.

"In the merger process that produces these galaxies, a lot of the stars get flung out to fairly large distances, and they end up in highly elongated orbits that take them far away and then back in close to the center," Primack said.

To an observer outside the galaxy, a star on such an elongated orbit would only appear to be far from the galactic center if the long axis of its orbit is more or less perpendicular to the observer's line of sight. If the long axis of the orbit is aligned with the line of sight, the star would always appear to be in the crowded center of the galaxy from the perspective of the observer.

"If we see a star at a large distance from the center of the galaxy, that star is going to be mostly moving either away from the center or back toward the center. Almost certainly, most of its motion is perpendicular to our line of sight," Primack said.

The simulated mergers involved typical spiral galaxies, each embedded in a halo of cold dark matter. The simulations followed the gravitational and hydrodynamic evolution of the merger systems, taking into account the complicated feedbacks from star formation, supernovae, and the heating and cooling of gases in the galaxies. Each simulation was then "observed" from three different directions and at two slightly different times after the merger.

From more than 200 merger simulations run by Cox on a supercomputer at UCSC, the researchers analyzed 10 mergers that yielded elliptical galaxies with masses similar to those of the galaxies observed in 2003. The results were completely consistent with the reported observations, Primack said.

"Our conclusion is that what they saw is exactly what the cold dark matter model would predict," he said. "Their data are great, and this actually gives us more insight into how elliptical galaxies form."

"We predict that other velocity tracers in the same elliptical galaxies will show higher velocities if they are less concentrated toward the galaxy center or if they move on more circular orbits," Dekel said. "This is likely to be the case for compact star clusters, which are also observable in the outskirts of elliptical galaxies."
-end-


University of California - Santa Cruz

Related Dark Matter Articles from Brightsurf:

Dark matter from the depths of the universe
Cataclysmic astrophysical events such as black hole mergers could release energy in unexpected forms.

Seeing dark matter in a new light
A small team of astronomers have found a new way to 'see' the elusive dark matter haloes that surround galaxies, with a new technique 10 times more precise than the previous-best method.

Holding up a mirror to a dark matter discrepancy
The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.

Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.

Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.

New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.

Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.

Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Read More: Dark Matter News and Dark Matter Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.