Scientists use an 'ice lolly' to find polar bacteria in their own backyard

September 28, 2006

To study the bacteria which survive in extreme cold, scientists no longer have to go to extreme environments, such as Antarctic lakes and glaciers. Bacteria previously isolated from polar climates, and have properties which allow them to survive in extreme cold, have been isolated from soil in temperate environments.

Professor Virginia Walker and her colleagues at Queen's University, Canada, have developed a technique to isolate bacteria which have properties to interact with, and modify, ice. This technique involved the formation of an 'ice finger' (or lolly) to select for bacteria which will adsorb to ice. These bacteria were then cultured and identified using their DNA.

The bacteria can modify ice and water in a number of ways. One of the species identified, Chryseobacterium sp., demonstrated Ice Recrystallisation Inhibition (IRI), a property that can be exploited in the production of ice-cream to prevent it from recrystallising and becoming 'crunchy'.

Other species isolated in this study promote the formation of ice crystals at temperatures close to melting, a property which is useful in the production of artificial snow.

Pseudomonas borealis is one species which is not only ice-forming, it is also thought to be tolerant to cold and could therefore have advantages for snow-making in artificial environments such as ski centres and in waste-water purification.

"Selecting for rare microbes that seem to stick to ice has been fun, but now the real work begins to find out what genes are responsible for this attraction" Said Professor Walker.

These findings will decrease the costs involved in the further study of such bacteria and their properties, as scientists will no longer need expeditions to the poles in order to isolate the bugs; they can find them in their own backyards.
-end-


Blackwell Publishing Ltd.

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.