Surprise in the organic orchard -- a healthier worm in the apple

September 28, 2007

Insects can catch more than a cold from certain viruses. Some viruses can be lethal to pest species - turning their insides to soup - without harming beneficial insects or other organisms. Hence they are used as an environmentally friendly means of biological crop protection worldwide. The proverbial worm in the apple, the codling moth caterpillar, has been controlled in European orchards for years with a baculovirus called codling moth granulovirus (CpGV). But in southwest Germany, some organic apple growers noticed that the virus was losing its effectiveness. Pest resistance to chemical insecticides is common in agriculture, but resistance to viruses had never been a problem in the past. However, as reported this week in Science magazine, a single gene in the codling moth can make it 100,000 times less susceptible to the granulovirus. This highlights the need to anticipate the risk of resistance in pest control, not only for insecticides but also viruses.

The discovery was reported by a team of insect virologists and geneticists from the Agricultural Service Centre of Rhineland-Palatinate (DLR Rheinpfalz), the German Federal Biological Research Centre (BBA Darmstadt), the University of Hohenheim, and the Max Planck Institute for Chemical Ecology (MPICE Jena). Starting in 2005, codling moths collected from 13 organic orchards in southwest Germany were tested in the laboratory to confirm that the insects could tolerate granulovirus amounts more than a thousand times higher than previously. Genetic studies showed that the resistance could be transmitted from parents to offspring via one of the sex chromosomes - which helps to explain how the resistance increased so quickly.

The sex chromosomes in humans are called X and Y, with XX females and XY males. This is reversed in moths, where the sex chromosomes are called Z and W, with ZZ males and ZW females. The researchers found that the gene for granulovirus resistance occurs on the Z chromosome. Female caterpillars need only a single copy of the resistance gene to be nearly 100,000 times less susceptible to granulovirus infection. They stay healthy and survive to reproduce, when most others have been killed.

Sons from matings between these highly resistant females and susceptible males carry a virus resistance gene on just one of their two Z chromosomes. "Our research has shown that such males can pupate normally if they encounter a low dose of the virus" reports Dr. Johannes Jehle of the DLR Rheinpfalz. They survive and pass on their resistance gene to the next generation. "In later generations, there are also males carrying the resistance gene on both Z chromosomes, and these can survive even higher virus concentrations" explains the leader of the research team.

"This means of inheritance offers the quickest possible way for the insects to evolve resistance" says Prof. David Heckel of the MPICE. "If the apple grower increases virus applications to try to control the damage caused by the resistant population, the opposite results. Selection for resistance accelerates and the frequency of the gene on the Z-chromosome increases even faster in the population."

Jehle and his colleagues are planning for the future in response to this alarming result. In parallel with the inheritance studies, several new isolates of the codling moth granulovirus have been screened since 2006 for their ability to overcome the resistance. In 2007, extensive field tests in Germany, Italy, France and Switzerland have been conducted with the most promising viruses. But even if new virus varieties can overcome the Z-linked resistance, the authors caution that their successful use in the longer term will depend on resistance management strategies, similar to those now routinely used for chemical insecticides.
-end-
Original work:

S. Asser-Kaiser, E. Fritsch, K. Undorf-Spahn, J. Kienzle, K. E. Eberle, N. A. Gund, A. Reineke, C. P. W. Zebitz, D. G. Heckel, J. Huber, J. A. Jehle

Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance.

Science, September 28, 2007

Max-Planck-Gesellschaft

Related Chromosomes Articles from Brightsurf:

Cancer's dangerous renovations to our chromosomes revealed
Cancer remodels the architecture of our chromosomes so the disease can take hold and spread, new research reveals.

Y chromosomes of Neandertals and Denisovans now sequenced
An international research team led by Martin Petr and Janet Kelso of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, has determined Y chromosome sequences of three Neandertals and two Denisovans.

Female chromosomes offer resilience to Alzheimer's
Women live longer than men with Alzheimer's because their sex chromosomes give them genetic protection from the ravages of the disease.

New protein complex gets chromosomes sorted
Researchers from the University of Tsukuba have identified a novel protein complex that regulates Aurora B localization to ensure that chromosomes are correctly separated during cell division.

Breaking up is hard to do (especially for sex chromosomes)
A team of scientists at the Sloan Kettering Institute has discovered how the X and Y chromosomes find one another, break, and recombine during meiosis even though they have little in common.

Exchange of arms between chromosomes using molecular scissors
The CRISPR/Cas molecular scissors work like a fine surgical instrument and can be used to modify genetic information in plants.

How small chromosomes compete with big ones for a cell's attention
Scientists at the Sloan Kettering Institute have solved the puzzle of how small chromosomes ensure that they aren't skipped over during meiosis, the process that makes sperm and egg.

GPS for chromosomes: Reorganization of the genome during development
The spatial arrangement of genetic material within the cell nucleus plays an important role in the development of an organism.

Extra chromosomes in cancers can be good or bad
Extra copies of chromosomes are typical in cancerous tumor cells, but researchers taking a closer look find that some extra copies promote cancer growth while others actually inhibit cancer metastasis.

X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.

Read More: Chromosomes News and Chromosomes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.