Ultrafine air particles may increase firefighters' risk for heart disease

September 28, 2010

CINCINNATI--Firefighters are exposed to potentially dangerous levels of ultrafine particulates at the time they are least likely to wear protective breathing equipment. Because of this, researchers believe firefighters may face an increased risk for heart disease from exposures during the fire suppression process.

Coronary heart disease is the No. 1 killer of American firefighters, with many of these incidents taking place during or just after a firefighting incident. Researchers say exposure to these harmful ultrafine air particulates could predispose firefighters to heart disease--particularly in those at a less-than-optimal level of physical fitness or personal health.

In a study conducted collaboratively by the University of Cincinnati (UC), Underwriters Laboratories Inc. and the Chicago Fire Department, researchers have found that more than 70 percent of particulates released during fires are "ultrafine," invisible to the naked eye but able to be inhaled into the deepest compartments of the lung.

These findings were reported in the August 2010 issue of the Journal of Occupational and Environmental Medicine. This study was the first to characterize the size and distribution of particulates, including those in the ultrafine range, during domestic fires.

For this study, researchers conducted a series of simulated house and automobile fires to measure the amount and specific characteristics of breathable particulates released during combustion and, consequently, what firefighters are exposed to during the course of their typical work environment.

Fire suppression takes place in two phases. In the first, known as "knockdown," firefighters squelch the flames with water to avoid fire spread. Workers are required to wear protective breathing equipment during this time to avoid exposure to smoke and toxic gases produced from the process. During "overhaul," the second phase, firefighters enter the structure and work to prevent re-ignition of partially burned material.

Researchers found that levels of ultrafine particulates were highest during overhaul, both in indoor and outdoor structure fires as well as automobile fires.

"Firefighters simply can't avoid inhaling these ultrafine particles when they are not wearing their protective breathing apparatus and, unfortunately, they routinely remove it during overhaul," explains Stuart Baxter, PhD, a collaborator in the study and UC professor of environmental health.

"Standard issue firefighting equipment weighs about 60 pounds, and under the exertion of firefighting the standard air tank only lasts about 20 minutes, so as soon as they determine the situation is safe--typically during overhaul--firefighters shed the protective gear," he adds. "Much of this ultrafine exposure could be avoided through equipment improvements and more rigid safety protocols for fire suppression--including additional workers who could be rotated in to reduce the physical and emotional burden of the job."
-end-
Collaborators in the study include Clara Sue Ross, MD, JD, Thomas Fabian, PhD, Jacob Borgerson, Jamila Shawon, Pravinray Gandhi, PhD, James Dalton and James Lockey, MD. Funding for the study came from the Department of Homeland Security and AFG Fire Prevention and Safety Grants Program. Funders had no involvement in study design, data collection/analysis, writing of the paper or decision to seek publication.

Lockey has served as a paid witness, independent medical examiner or both in workers' compensation and disability cases, including cases involving firefighters. There is no other potential conflict of interest relevant to this research.

University of Cincinnati Academic Health Center

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.