URI scientists: Marine plants can flee to avoid predators

September 28, 2012

NARRAGANSETT, R.I. - September 28, 2012 - Scientists at the University of Rhode Island's Graduate School of Oceanography have made the first observation of a predator avoidance behavior by a species of phytoplankton, a microscopic marine plant. Susanne Menden-Deuer, associate professor of oceanography, and doctoral student Elizabeth Harvey made the unexpected observation while studying the interactions between phytoplankton and zooplankton.

Their discovery will be published in the September 28 issue of the journal PLOS ONE.

"It has been well observed that phytoplankton can control their movements in the water and move toward light and nutrients," Menden-Deuer said. "What hasn't been known is that they respond to predators by swimming away from them. We don't know of any other plants that do this."

While imaging 3-dimensional predator-prey interactions, the researchers noted that the phytoplankton Heterosigma akashiwo swam differently in the presence of predators, and groups of them shifted their distribution away from the predators.

In a series of laboratory experiments, Menden-Deuer and Harvey found that the phytoplankton not only flee when in the presence of the predatory zooplankton, but they also flee when in water that had previously contained the predators. They found only a minimal effect when the phytoplankton were exposed to predators that do not feed on phytoplankton.

"The phytoplankton can clearly sense the predator is there. They flee even from the chemical scent of the predator but are most agitated when sensing a feeding predator," said Menden-Deuer.

When the scientists provided the phytoplankton with a refuge to avoid the predator - an area of low salinity water that the predators cannot tolerate - the phytoplankton moved to the refuge.

The important question these observations raise, according to Menden-Deuer, is how these interactions affect the survival of the prey species.

Measuring survival in the same experiments, the researchers found that fleeing helps the alga survive. Given a chance, the predators will eat all of the phytoplankton in one day if the algae have no safe place in which to escape, but they double every 48 hours if they have a refuge available to flee from predators. Fleeing makes the difference between life and death for this species, said Menden-Deuer.

"One of the puzzling things about some phytoplankton blooms is that they suddenly appear," she said. "Growth and nutrient availability don't always explain the formation of blooms. Our observation of algal fleeing from predators is another mechanism for how blooms could form. Amazingly, looking at individual microscopic behaviors can help to explain a macroscopic phenomenon."

The researchers say there is no way of knowing how common this behavior is or how many other species of phytoplankton also flee from predators, since this is the first observation of such a behavior.

"If it is common among phytoplankton, then it would be a very important process," Menden-Deuer said. "I wouldn't be surprised if other species had that capacity. It would be very beneficial to them."

In future studies, she hopes to observe these behaviors in the ocean and couple it with genetic investigations.
-end-
Funding for this research was provided by the National Science Foundation, the National Oceanic and Atmospheric Administration, and the U.S. Department of Agriculture. The study was conducted, in part, at the URI Marine Life Science Facility, which is supported by the Rhode Island Experimental Program to Stimulate Competitive Research.

University of Rhode Island

Related Phytoplankton Articles from Brightsurf:

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

Synthesis study demonstrates phytoplankton can bloom below Arctic sea ice
Researchers used historical scientific studies, along with contemporary observations employing autonomous floats and robotic vehicles, to demonstrate that phytoplankton blooms occur under Arctic Ocean sea ice.

Ninety years of data shows global warming impacts on foundation of marine ecosystems
Phytoplankton are microscopic plants that underpin ocean productivity and provide 50% of the world's oxygen via photosynthesis.

Ocean warming and acidification effects on calcareous phytoplankton communities
A new study led by researchers from the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB) warns that the negative effects of rapid ocean warming on planktonic communities will be exacerbated by ocean acidification.

Smaller than expected phytoplankton may mean less carbon sequestered at sea bottom
A study that included the first-ever winter sampling of phytoplankton in the North Atlantic revealed cells smaller than what scientists expected, meaning carbon sequestration models may be too optimistic.

Observing phytoplankton via satellite
Thanks to a new algorithm, researchers at the AWI can now use satellite data to determine in which parts of the ocean certain types of phytoplankton are dominant.

UCI oceanographers predict increase in phytoplankton by 2100
A neural network-driven Earth system model has led University of California, Irvine oceanographers to a surprising conclusion: phytoplankton populations will grow in low-latitude waters by the end of the 21st century.

Study offers solution to Ice Age ocean chemistry puzzle
New research into the chemistry of the oceans during ice ages is helping to solve a puzzle that has engaged scientists for more than two decades.

Kīlauea lava fuels phytoplankton bloom off Hawai'i Island
When Kīlauea Volcano erupted in 2018, it injected millions of cubic feet of molten lava into the nutrient-poor waters off the Big Island of Hawai'i.

Scientists who raced to study Kilauea's lava as it fueled rare phytoplankton bloom find surprise
Results from a rapid-response oceanographic expedition in the North Pacific reveal a surprise about how lava from the Kilauea Volcano, which erupted on the island of Hawai'i during the summer of 2018, triggered a vast phytoplankton bloom.

Read More: Phytoplankton News and Phytoplankton Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.