Nav: Home

Connecting Alzheimer's disease and the immune system

September 28, 2015

The role of the immune system in Alzheimer's disease is a hot topic, but exactly how the two are connected and what interventions could help lower risk remain a mystery. In a new study published in Nature Neuroscience this week, researchers in the Ann Romney Center for Neurologic Diseases at Brigham and Women's Hospital (BWH) investigate how genetic risk factors for Alzheimer's disease may influence a key type of immune cell. Their results lay the groundwork for designing better therapeutic strategies and better prediction tools for risk of developing Alzheimer's disease.

"There's an emerging theme in Alzheimer's genetics that the immune system may be strongly involved in the onset of Alzheimer's disease," said co-corresponding author Philip De Jager, MD, PhD, who directs the Program in Translational NeuroPsychiatric Genomics at the Ann Romney Center for Neurologic Diseases at BWH. "Before genetic studies, many thought that inflammation was a symptom of or a reaction to the disease, but our study and others build a compelling case that the immune system may be involved in the development of Alzheimer's disease."

De Jager and his team examined the levels of key proteins in relation to genetic variants that have been implicated in Alzheimer's disease in the past. The team looked at blood samples from more than 100 younger, healthy subjects as well as 61 older subjects and measured protein levels in monocytes - immune cells that can travel to various sites throughout the body, including the brain where they differentiate into macrophages, specialized for their new environment, in this case the central nervous system.

One of the most intriguing results the team uncovered is connected to TREM2 - a protein that is a major target of Alzheimer's disease drug development efforts. A previous study of a population in Iceland found that a rare mutation in the gene encoding TREM2 substantially elevated a person's risk of Alzheimer's disease. However, it was unclear whether more TREM2 or less TREM2 led to this heightened risk, and follow-up studies in mice have produced conflicting results.

De Jager and his colleagues found evidence that directly addresses this question, determining that higher levels of TREM2 were associated with increased risk. The team found that a genetic variant tied to a separate protein, CD33, also influenced TREM2 levels. The team's follow-up studies confirmed that the genetic variant led to more CD33, which in turn led to more TREM2. "One interesting note about these protein associations is that we did not observe them at the mRNA level," said first author Gail Chan, PhD, a research fellow in the Ann Romney Center for Neurologic Diseases at BWH. "This emphasizes the amount of inter-regulation that a cell does to balance all of the related molecules in order to function correctly."

"Up until now, it's been unclear whether it would be beneficial to increase or decrease TREM2 levels," said co-corresponding author Elizabeth Bradshaw, PhD, of the Ann Romney Center for Neurologic Diseases at BWH. "Further studies are needed to understand the connections we're uncovering and the roles of these proteins, but we're clearly seeing evidence that these genetic variants have an effect in this type of immune cell."

As a next step, Bradshaw, De Jager and their colleagues plan to measure CD33 and TREM2 levels in subjects as part of the Brigham Healthy Aging Project to determine if these measurements and others could be part of a diagnostic panel for predicting risk of Alzheimer's disease.
-end-
Funding for this project was provided by the US National Institutes of Health (grants R01 AG036836, R01 AG048015, R01 AG043617, P01 AG036694, P30 AG10161, 179 R01 AG15819, R01 AG17917, and U01 AG46152).

Other researchers who contributed to this work include Charles C. White, Phoebe A. Winn, Maria Cimpean, Joseph M. Replogle, Laura R. Glick, Nicole E. Cuerdon, Katie J. Ryan, Keith A. Johnson, Julie A. Schneider, David A. Bennett, Lori B. Chibnik and Reisa A. Sperling.

Paper citation:

Chan et al., CD33 modulates TREM2: convergence of Alzheimer loci, Nature Neuroscience (2015),http://dx.doi.org/10.1038/nn.4126

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare. BWH has more than 4.2 million annual patient visits, nearly 46,000 inpatient stays and employs nearly 16,000 people. The Brigham's medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in patient care, quality improvement and patient safety initiatives, and its dedication to research, innovation, community engagement and educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Brigham Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, more than 1,000 physician-investigators and renowned biomedical scientists and faculty supported by nearly $600 million in funding. For the last 25 years, BWH ranked second in research funding from the National Institutes of Health (NIH) among independent hospitals. BWH continually pushes the boundaries of medicine, including building on its legacy in transplantation by performing a partial face transplant in 2009 and the nation's first full face transplant in 2011. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative as well as the TIMI Study Group, one of the premier cardiovascular clinical trials groups. For more information, resources and to follow us on social media, please visit BWH's online newsroom.

Brigham and Women's Hospital

Related Immune System Articles:

Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
How the immune system protects us against bowel cancer
Researchers from Charité - Universitätsmedizin Berlin have discovered a protective mechanism which is used by the body to protect intestinal stem cells from turning cancerous.
How herpesviruses shape the immune system
DZIF scientists at the Helmholtz Zentrum München have developed an analytic method that can very precisely detect viral infections using immune responses.
The immune system's fountain of youth
Helping the immune system clear away old cells in aging mice helped restore youthful characteristics.
More Immune System News and Immune System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.