Nav: Home

Flu infection reveals many paths to immune response

September 28, 2015

A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological pathways. The researchers say their findings may offer key insights for designing more effective vaccines in general.

"During infection, viral proteins are present throughout the cell, not just in the limited compartments that have been the focus of attention in classical immunology," said study leader Laurence C. Eisenlohr, Ph.D., a viral immunologist in the Department of Pathology and Laboratory Medicine at The Children's Hospital of Philadelphia (CHOP). "By investigating how active infections interact with mechanisms deep inside immune cells, we can design vaccines with broader protection against invading pathogens."

The study appears online today in Nature Medicine. Before recently arriving at CHOP, Eisenlohr led this research at Thomas Jefferson University.

Conventional textbook approaches, said Eisenlohr, rely on laboratory studies of "nominal" antigens, usually in the form of purified proteins introduced into cell cultures. An antigen-presenting cell (APC) takes up the proteins and delivers them to a compartment inside itself called the endosome, where the proteins are digested ("processed") into peptides. Those peptides, displayed at the cell surface, stimulate CD4+ T cells, which are vitally important in the body's defense against most infectious agents.

Eisenlohr and colleagues showed in their current study that live influenza virus follows a more complicated path. "During active infection, viral proteins are delivered to regions in the antigen-presenting cell well beyond the endosome, and are consequently subjected to diverse types of processing machinery. As a result, peptides are produced in greater amounts and broader variety compared to the conventional model," he said.

The classical model is said to rely on an exogenous process--in which the antigens are introduced into the APC from outside the cell. The current study, Eisenlohr said, revealed the potency of the endogenous process--in which the virus infects the APC and the APC processes, through a variety of mechanisms, viral proteins that are being produced inside the cell. These processing pathways generate more diverse peptides, which in turn elicit a more robust antiviral response from CD4+ T cells.

Eisenlohr said the study results have implications for designing more effective vaccines, against both influenza and other viruses. "Live vaccines are generally more effective than inactivated vaccines," he said. "That supports the concept that natural infection elicits a larger, more comprehensive immune response than a killed virus. Therefore, if safety concerns preclude use of a live vaccine, we may need to modify inert vaccines to better mimic natural infection--accessing a broader variety of peptides and thus generating a more protective immune response."

He added that "more rational vaccine design will need to consider specific details of each pathogen, to better access those peptides, but the extra work will likely be worth it."
-end-
The National Institutes of Health (grants AI036331 and AI101134) supported this study. In addition to his CHOP position, Eisenlohr is on the faculty of the Perelman School of Medicine at the University of Pennsylvania. Eisenlohr's co-authors are from CHOP, Thomas Jefferson University and Janssen Pharmaceuticals.

"Endogenous antigen processing drives the primary CD4+ T cell response to influenza," Nature Medicine, published online Sept. 28, 2015. http://doi.org/10.1038/nm.3958

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program receives the highest amount of National Institutes of Health funding among all U.S. children's hospitals. In addition, its unique family-centered care and public service programs have brought the 535-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu.

Children's Hospital of Philadelphia

Related Influenza Articles:

Birds become immune to influenza
An influenza infection in birds gives a good protection against other subtypes of the virus, like a natural vaccination, according to a new study.
Researchers shed new light on influenza detection
Notre Dame Researchers have discovered a way to make influenza visible to the naked eye, by engineering dye molecules to target a specific enzyme of the virus.
Maternal vaccination again influenza associated with protection for infants
How long does the protection from a mother's immunization against influenza during pregnancy last for infants after they are born?
Influenza in the tropics shows variable seasonality
Whilst countries in the tropics and subtropics exhibit diverse patterns of seasonal flu activity, they can be grouped into eight geographical zones to optimise vaccine formulation and delivery timing, according to a study published April 27, 2016 in the open-access journal PLOS ONE.
Influenza viruses can hide from the immune system
Influenza is able to mask itself, so that the virus is not initially detected by our immune system.
More Influenza News and Influenza Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...