Nav: Home

Air pollution and traffic linked to deaths and organ rejection in lung transplant patients

September 28, 2015

Amsterdam, The Netherlands: Researchers have shown for the first time that lung transplant patients in Europe who live on or near busy roads with high levels of air pollution are more likely to die or to experience chronic organ rejection, than those living in less polluted areas.

Dr David Ruttens, from the University of Leuven (Belgium) told the European Respiratory Society's International Congress today (29 September, 2015) that the risk of dying increased by 10% for patients living in an area where air pollution was above World Health Organization (WHO) recommended maximum levels, compared with patients living in areas with lower levels of pollution. However, this increased risk was not seen in lung transplant patients who were taking a class of antibiotics called macrolides, which include azithromycin and clarithromycin.

WHO estimates that 3.7 million people worldwide die prematurely every year as a result of exposure to small particulate matter measuring between 2.5-10 micrometers in diameter (known as PM10). Ten micrometers is less than the width of a human hair, and PM10 particles tend to be dust particles stirred up by vehicles on roads and some grinding operations. WHO recommends PM10 particles should not exceed 20 micrograms per cubic metre in the atmosphere [1].

Dr Ruttens said: "Short and long-term exposure to air pollution has been linked to an increase in deaths from respiratory diseases, particularly among vulnerable populations. Lung transplant patients are among the most vulnerable because they have weakened immune systems due to the immunosuppressive drugs they have to take to prevent organ rejection."

Around 50% of lung transplant patients survive for five years or more after their operation; a rate that is lower than for other organ transplants and is due to a higher incidence of chronic organ rejection. Doctors have suspected for some time that this might be due to air pollution but, until now, there has been no confirmation that this is the case.

Dr Ruttens and a team of European researchers led by Professor Dr Bart Vanaudenaerde, also from the University of Leuven, collected data on 5,707 lung transplant patients from 13 major lung transplant centres in 10 European countries from 1987 to 2012, including follow-up data in 2013 [2].

They estimated the patients' exposure to PM10 particles at their homes, and collected information on the density of roads around their home addresses. They also collected other information, including date and type of lung transplant, age, sex, underlying disease, socio-economic status, smoking status before the transplant and whether or not the patients were taking macrolides after the transplant. They matched this with outcomes, including chronic rejection and death.

In order to standardise the information on road density and air pollution for addresses all over Europe, the researchers collaborated with an environmental expert consortium (ESCAPE) to quantify annual mean concentrations of PM10 particles, the distance from patients' homes to the nearest main roads, and the amount of road length within a 50, 100, 200, 500 and 1000 metre radius of the home addresses (known as buffer zones).

During an average of 5.6 years of follow-up, 2577 patients (45.2%) died and 2688 (47.1%) developed chronic organ rejection. A total of 3511 patients (62.2%) took macrolides at some point in their treatment, and 2149 patients (37.7%) did not [3].

Chronic organ rejection was experienced by 61.5% of patients in the macrolide group and in 38.5% of patients not taking macrolides. "Macrolides, such as azithromycin, tend to be given only when organ rejection or inflammation occurs," explained Dr Ruttens. "As fewer patients taking macrolides died, this suggests that the drugs are working and protecting against further complications and death."

A total of 640 (29.8%) of patients died in the macrolide group and 1937 (54.5%) died in the macrolide-free group.

The researchers found a link between road length in the area around patients' homes and chronic rejection in the group of patients not taking macrolides. In the 200, 500 and 1,000 metre buffer zones there was an 11-13% increase in the risk of organ rejection for every 100-metre increase in road length. A similar increase in the risk of death was also seen in the 100, 200 and 500 metre buffer zones. No such associations were seen in the group of patients who were taking macrolides.

"Our results show that both deaths and chronic rejection in lung transplant patients are associated with air pollution and exposure to traffic," said Dr Ruttens. "Lowering the levels of air pollution in Europe would significantly improve the chances of these patients' survival and lower their risk of organ rejection. For instance, if levels of air pollution were reduced to below the maximum recommended by the WHO, there would be a 9.9% reduction in deaths among lung transplant patients who were not taking macrolides, and 6.4% reduction among all patients, regardless of whether or not they were taking macrolides.

"The use of macrolides, such as azithromycin or clarithromycin, seems to protect patients against the devastating effects of air pollution."

The researchers say their research is unique because it is the first time that lung transplant centres across Europe have collaborated to investigate the factors involved in deaths and organ rejection among patients.

Lung transplants are usually the final treatment option for patients with end-stage pulmonary diseases such as lung emphysema, pulmonary fibrosis and cystic fibrosis.
Notes to editors:
  • Abstract: The impact of long-term air pollution and traffic on outcome after lung transplantation in Europe.
  • Session: 364 Predictors of lung transplant complications
  • Date and time: 08.30-10.3029 September, 2015,
  • Room: 2.1
[1] A micrometer is one millionth of a metre, and a microgram is one millionth of a gram.

[2] The lung transplant centres were in Barcelona, Copenhagen, Essen, Groningen, Hannover, Leuven, Munich, Newcastle, Oslo, Pavia, Utrecht, Vienna and Zurich. The ten European countries were Austria, Belgium, Denmark, Germany, Italy, the Netherland, Norway, Spain, Switzerland and the United Kingdom.

[3] These figures are different to those in the abstracts because they have been updated since the abstract was submitted. Therefore, the data in this press release are the most up-to-date.

European Lung Foundation

Related Air Pollution Articles:

Aspirin may prevent air pollution harms
A new study is the first to report evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) like aspirin may lessen the adverse effects of air pollution exposure on lung function.
Curbing indoor air pollution in India
Clean cooking energy transitions are extremely challenging to achieve, but they offer enormous potential health, environmental, and societal benefits.
Exposure to air pollution in India is associated with more hypertension in women
The CHAI project assessed the link between fine particulate matter (PM2.5) and black carbon and blood pressure in over 5,500 people living in a peri-urban area near Hyderabad city
Study finds link between hypertension and air pollution
A new study soon to appear in the Faculty of Public Health's Journal of Public Health, published by Oxford University Press, suggests that air pollution and living in apartment buildings may be associated with an increased risk for dangerous conditions like heart disease, stroke, and type 2 diabetes.
Study sheds new light on the harms of air pollution
A new University at Buffalo study based on levels before, during and after the Beijing Olympics reveals how air pollution affects the human body at the level of metabolites.
More Air Pollution News and Air Pollution Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...