Nav: Home

Crunching numbers: Math equations help build optimal bird wing

September 28, 2015

TALLAHASSEE, Fla. -- If you had to design a bird or dolphin drone from scratch, how would you build the wings?

That's the question that Florida State University Assistant Professor of Mathematics Nick Moore posed in a new paper published by the academic journal Physics of Fluids.

Specifically, he wanted to know how flexible the wings or fins should be, so that if an engineer designed a flying or swimming drone, they could create the most effective one possible.

"We want to understand how wings and fins perform differently when they are made of flexible material," Moore said. "Sometimes, flexibility can really boost performance, but too much flexibility can be a bad thing. We want to find the happy medium."

Furthermore, Moore wanted to see if allowing the wing to be more flexible in certain places could help even more. He found that concentrating flexibility near the front of the wing, while keeping the back rigid, maximizes its capability to thrust forward when it is flapped.

In fact, a wing designed in this way generates 36 percent more thrust than one for which the flexibility is constant throughout.

Moore said the mathematical model aids in the fundamental understanding of how birds, insects and some amphibians are designed from a biological perspective. But the practical advantages for engineers designing robots are even greater.

"Maybe engineers will look at this as a way to improve designs," he said. "If you can control exactly how to build a flapping wing, this is how you should do it."

Drones are being used in all sorts of ways, from construction design to military endeavors to search and rescue operations.

To perform the calculations, Moore used partial differential equations that were solved on an ordinary computer.

In the beginning, Moore manually chose the wing designs that were put through the computer to be tested.

Ultimately, though, he developed an algorithm that allowed the computer to suggest its own guesses, and this was used to pin down the optimal design.

Much of the advanced mathematics conducted in the world right now requires super computers, but Moore takes a different approach. He used relatively simple equations so that designers with a math or engineering background could replicate the work.

"I like to spend more energy simplifying the mathematics as much as possible, so that the calculations can be run on a desktop, or even a laptop, in a reasonable amount of time," he said.
-end-
Moore's work was funded by a grant from Florida State's Council on Research and Creativity.

CONTACT: Kathleen Haughney, University Communications
(850) 644-1489; khaughney@fsu.edu

Florida State University

Related Mathematics Articles:

People can see beauty in complex mathematics, study shows
Ordinary people see beauty in complex mathematical arguments in the same way they can appreciate a beautiful landscape painting or a piano sonata.
Improving geothermal HVAC systems with mathematics
Sustainable heating, ventilation, and air conditioning systems, such as those that harness low-enthalpy geothermal energy, are needed to reduce collective energy use and mitigate the continued effects of a warming climate.
How the power of mathematics can help assess lung function
Researchers at the University of Southampton have developed a new computational way of analyzing X-ray images of lungs, which could herald a breakthrough in the diagnosis and assessment of chronic obstructive pulmonary disease (COPD) and other lung diseases.
Mathematics pushes innovation in 4-D printing
New mathematical results will provide a potential breakthrough in the design and the fabrication of the next generation of morphable materials.
More democracy through mathematics
For democratic elections to be fair, voting districts must have similar sizes.
More Mathematics News and Mathematics Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...